Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-12-01T02:31:23.539Z Has data issue: false hasContentIssue false

Photocatalytic Activity of Bare and Amine-Treated TiO2 Nanoparticles

Published online by Cambridge University Press:  18 June 2013

Fahim Hossain
Affiliation:
Department of Engineering Science and Materials, University of Puerto Rico at Mayagüez, Mayaguez, Puerto Rico, 00680-9044, USA.
Oscar Perales Perez
Affiliation:
Department of Engineering Science and Materials, University of Puerto Rico at Mayagüez, Mayaguez, Puerto Rico, 00680-9044, USA.
Sangchul Hwang
Affiliation:
Department of Civil Engineering, University of Puerto Rico at Mayagüez, Mayagüez, Puerto Rico, 00680-9044, USA.
Get access

Abstract

The capability of tuning the functional properties of nanosize TiO2 nanoparticles (NPs) by suitable control of surface chemistry, phase stability and crystal size plays a key role on their safe use and enhanced efficacy in actual and envisioned applications, including nanomedicine, environmental remediation, and food safety, among others. On this basis, any attempt to develop a size-controlled synthesis method and an efficient surface treatment protocol becomes indispensable. Accordingly, we have synthesized TiO2 NPs via a modified aqueous processing route using HNO3 as a catalyst and polyvinylpyrrolidone as particle size controller and a dispersing agent. The NPs surface was treated by using Ethylenediamine (EDA) as a source for amine species. Bare and amine-treated TiO2 NPs were characterized by X-ray diffraction (XRD) and FTIR spectroscopy. The photocatalytic activity of TiO2 NPs was assessed by irradiating an aqueous solution of Methylene Blue (MB) dye containing different amounts of the NPs. XRD analyses evidenced the formation of two phases of crystalline TiO2 with an average crystallite size estimated at 15.3 nm. Bare and amine-treated TiO2 NPs exhibited significant activity under UV light illumination (365 nm). Bare NPs exhibited a dye photo degradation capability of about 38.02% with particle concentration of 0.5 g/l while amine-treated NPs reported 66.18% dye photo degradation capability with particle concentration of 0.5 g/l.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Fang, W. Q., Gong, X. Q., Yang, H. G., The Journal of Physical Chemistry Letters, 2, 725734 (2011).CrossRefGoogle Scholar
Teoh, W. Y., Scott, J. A., Amal, R., Journal of Physical Chemistry Letters, 3, 629639 (2012).CrossRefGoogle Scholar
Choi, H., Antoniou, M. G., Pelaez, M., de la Cruz, A. A., Shoemaker, J. A., Dionysiou, D. D., Environmental Science and Technology, 41(21), 75307535 (2007).CrossRefGoogle Scholar
Kazuhiko, M., Kazunari, D., (2010), Journal of Physical Chemistry Letters, 1, 26552661 (2010).Google Scholar
Pelaez, M., de la Cruz, A. A., Stathatos, E., Falaras, P., Dionysiou, D. D., Catalysis Today, 144, 1925 (2009).CrossRefGoogle Scholar
Diker, H., Varlikil, C., Mizrak, K., Dana, A., Energy, 36, 12431254 (2011).CrossRefGoogle Scholar
Sathish, M., Viswanathan, B., Viawanath, R. P., Gopinath, C. S., Chemistry of Materials, 17, 6349 (2005).CrossRefGoogle Scholar
Chen, X., Burda, C., Journal of the American Chemical Society, 130(15), 5018 (2008).CrossRefGoogle Scholar
Wong, M. S., Chou, H. P., Yang, T. S., Thin Solid Films, 494, 244249 (2006).CrossRefGoogle Scholar
Liu, Y., Li, J., Qiu, X., Burda, C., Journal of Photochemistry and Photobiology A: Chemistry, 190, 94100 (2007).CrossRefGoogle Scholar
Liu, G., Wang, X., Chen, Z., Cheng, H. M., Lu, G. Q., Journal of Colloid and Surface Science, 329, 331338 (2009).CrossRefGoogle Scholar
Mrowetz, M., Balcerski, W., Colussi, A. J., Hoffmann, M. R., Journal of Physical Chemistry: B, 108(45), 17270 (2004).CrossRefGoogle Scholar
Valentin, C. D., Pacchioni, G., Selloni, A., Livraghi, S., Giamello, E., Journal of Physical Chemistry Letters: B, 109, 1141411419 (2005).CrossRefGoogle Scholar
Reyes-Garcia, E. A., Sun, Y., Reyes-Gil, K., Raftery, D., Journal of Physical Chemistry C, 111, 27382748 (2007).CrossRefGoogle Scholar
Peng, F., Cai, L., Yu, H., Wang, H., Yang, J., Journal of Solid State Chemistry, 181, 130136 (2008).CrossRefGoogle Scholar
Belver, C., Bellod, R., Stewart, S. J., Requejo, F. G., García, M. F., Applied Catalysis B: Environmental, 65, 309314 (2006a).CrossRefGoogle Scholar
Irie, H., Watanabe, Y., Hashimoto, K., Journal of Physical Chemistry: B, 107, 5483 (2003).CrossRefGoogle Scholar
Arita, H., Arita, A., Kishi, K., Surface Science, 516, 191202 (2002).CrossRefGoogle Scholar
Sakthivel, S.. Janczarek, M., Kisch, H., Journal of Physical Chemistry, 108, 19384 (2004).CrossRefGoogle Scholar
Belver, C., Bellod, R., Fuerte, A., García, M. F., Applied Catalysis B: Environmental, 65, 301308 (2006b).CrossRefGoogle Scholar
Livraghi, S., Chierotti, M. R., Giamello, E., Magnacca, G., Paganini, M. C., Cappalettie, G., Bianchi, C. L., Journal of Physical Chemistry: C, 112, 17244 (2008).Google Scholar
Ananpattarachai, J., Kajitvichyanukul, P., Seraphin, S., Journal of Hazardous Materials, 168, 253261 (2009).CrossRefGoogle Scholar
Wang, J., Tafen, D. N., Lewis, J. P., Hong, J., Manivannan, A., Zhi, M., Li, M., Wu, N., Journal of the American Chemical Society, 131, 1229012297 (2009).CrossRefGoogle Scholar
Choi, W., Termin, A., Hoffmann, M.R., Journal of Physical Chemistry, 98 (1994).Google Scholar
Wei, C., Lin, W. Y., Zainal, Z., Williams, N. E., Zhu, K., Kruzic, A. P., Smith, R. L., Rajeshwar, K., Environmental Science & Technology, 28, 934938 (1994).CrossRefGoogle Scholar