Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-10T11:37:23.289Z Has data issue: false hasContentIssue false

Photo Etching of Polyimide Thin Film by TiO2 Micro Wire Prepared Using Phase Separation-Selective Leaching Method

Published online by Cambridge University Press:  01 February 2011

Y. Sone
Affiliation:
Department of Materials Science and Technology, Tokyo University of Science 2641 Yamazaki, Noda-shi, Chiba 278–8510 Japan
K. Nishio
Affiliation:
Department of Materials Science and Technology, Tokyo University of Science 2641 Yamazaki, Noda-shi, Chiba 278–8510 Japan
A. Yasumori
Affiliation:
Department of Materials Science and Technology, Tokyo University of Science 2641 Yamazaki, Noda-shi, Chiba 278–8510 Japan
Get access

Abstract

TiO2 photocatalysts have a strong oxidation ability for organic compounds under UV irradiation. The surfaces of polyimide and polymethyl methacrylate (PMMA) were photocatalytically machined using a porous TiO2 wire prepared by phase separation and selective leaching with elongation. After UV irradiation, these surfaces were decomposed along the length of the TiO2 wire. Such surface decomposition depended on the irradiation angle of UV light and irradiation time. The machining rate of PMMA was higher than that of the polyimide.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fujishima, A. and Honda, K., Nature 238, 37 (1972).Google Scholar
2. Ohko, Y., Saitoh, S., Tatsuma, T., Fujishima, A., J. Elec. Soc. 148, B24 (2001).Google Scholar
3. Pascual, J., Camassel, J., Mathieu, H., Phys. Rev. Lett. 39, 1490 (1977).Google Scholar
4. Goldstein, S., Czapski, G., Rabani, J., J. Phys. Chem. 98, 6586 (1994).Google Scholar
5. Sun, L.Z. and Bolton, J.R., J. Phys. Chem. 100, 4127 (1996).Google Scholar
6. Gao, R., Stark, J., Bahnemann, D.W., Rabani, J., J. Photochem. Photobiol. 148, 387 (2002).Google Scholar
7. Komatsu, D., Ohwaki, D., Yasumori, A., Transactions of the MRS of Japan 5, 2329 (2004).Google Scholar
8. Wkamura, M., Kandori, K., Ishikawa, T., Colloids and Surfaces A. 142, 107 (1998).Google Scholar
9. Wang, R., Hashimoto, K., Fujishima, A., Chikuni, M., Kojima, E., Kitamura, A., Shimohigoshi, M., Watanabe, T., Nature 388, 431 (1997).Google Scholar
10. Sopyan, I., Marusawa, S., Hashimoto, K., Fujishima, A., Chem. Lett. 23, 723 (1994).Google Scholar
11. Kubo, W., Tatsuma, T., Fujishima, A., Kobayashi, H., J. Phys. Chem. B 108, 3005 (2004).Google Scholar
12. Ishikawa, Y., Matsumoto, Y., Nishida, Y., Taniguchi, S., Watanabe, J., J. Am. Chem. Soc. 125, 6558 (2003).Google Scholar
13. Yasumori, A., Yamazaki, K., Kameshima, K. and Okada, K., Proceeding of The 9th International Conference on TiO2 Photocatalyst, to be submitted.Google Scholar
14. Doremus, R. H., in Glass Science (John Wiley & Sons, New York, 1973) pp. 5253.Google Scholar
15. Yasumori, A., Koike, K., Kameshima, Y., Okada, K. and Nishio, H., J. Non-Cryst. Solids 297, 239 (2002).Google Scholar