Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T09:40:37.815Z Has data issue: false hasContentIssue false

Phonons, Oxygen Isotope Effect and Superconductivity in Ba1−xKxBiO3

Published online by Cambridge University Press:  26 February 2011

W. Jin
Affiliation:
Argonne National Laboratory, Argonne, IL, 60439 Science and Technology Center for Superconductivity Materials Science Division
C.K. Loong
Affiliation:
Argonne National Laboratory, Argonne, IL, 60439 Intense Pulsed Neutron Source
D.G. Hinks
Affiliation:
Argonne National Laboratory, Argonne, IL, 60439 Materials Science Division
P. Vashishta
Affiliation:
Argonne National Laboratory, Argonne, IL, 60439 Materials Science Division
R.K. Kalia
Affiliation:
Argonne National Laboratory, Argonne, IL, 60439 Materials Science Division
M. H. Degani
Affiliation:
Argonne National Laboratory, Argonne, IL, 60439 Materials Science Division
D.L. Price
Affiliation:
Argonne National Laboratory, Argonne, IL, 60439 Materials Science Division
J.D. Jorgensen
Affiliation:
Argonne National Laboratory, Argonne, IL, 60439 Materials Science Division
B. Dabrowski
Affiliation:
Argonne National Laboratory, Argonne, IL, 60439 Science and Technology Center for Superconductivity Materials Science Division
Get access

Abstract

The phonon densities-of-states (DOS) of superconducting Ba1−xKxBi16O3 and Ba1−xKxBi18O3 (x=0.4) are determined using molecular dynamics (MD) simulations and inelastic neutron scattering measurements. The reference isotope-effect exponent is obtained from the mass variation of the first frequency moment of the phonon DOS. The energy gap, oxygen isotope-effect exponent and electron tunneling characteristics are calculated within the framework of Eliashberg theory of electron-phonon coupling.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mattheiss, L. R., et al. , Phys. Rev. B37, 3745 (1988).Google Scholar
2. Cava, R. J., et al. , Nature 332, 814 (1988);Google Scholar
2a Batlogg, B., et al. , Phys. Rev. Lett. 61, 1670 (1988).Google Scholar
3. Pei, S., et al. , Phys. Rev. B41, 4126 (1990).Google Scholar
4. Uemura, Y. J., et al. , Nature 335, 151 (1988).CrossRefGoogle Scholar
5. Kondoh, S., et al. , Physica C157, 469 (1989).Google Scholar
6. Birgeneau, R.J. and Shirane, G., in Physical Properties of High Temperature Superconductors, edited by Ginsberg, G.M. (World Scientific, Singapore, 1989), Vol. I, Chapter 4, and references therein.Google Scholar
7. Sato, H., et al. , Nature 338, 241 (1989).CrossRefGoogle Scholar
8. Poole, C. P. Jr., et al. , Copper Oxide Superconductors, (John Wiley & Sons, New York, 1988), P. 130, 208, Table X.3, and references therein.Google Scholar
9. Allen, P.B., Nature 339, 428 (1989).Google Scholar
10. Hinks, D. G., et al. , Nature 335, 419 (1988).CrossRefGoogle Scholar
11. Schlesinger, Z., et al. , Phys. Rev. B40, 6862 (1989).CrossRefGoogle Scholar
12. Zasadzinski, J., et al. , Physica C158, 519 (1989).CrossRefGoogle Scholar
13. Huang, Q., et al. , Nature 347, 369 (1990).CrossRefGoogle Scholar
14. Loong, C.-K., et al. , Phys. Rev. Lett. 62, 2628 (1989).Google Scholar
15. Price, D.L. and Skold, K., in Neutron Scattering, edited by Skold, K. and Price, D.L. (Academic Press, Orlando, 1986), part A, Chap. 1, p. 29.Google Scholar
16. Schrieffer, J. R., Theory of Superconductivity, (Benjamin, New York, 1964).Google Scholar
17. McMillian, W. L., Phys. Rev. 167, 331 (1968).Google Scholar
18. Allen, P. B. and Mitrovic, B., in Solid State Physics., ed. Ehrenrich, H., Seitz, F., and Turnbull, D. (Academic Press, New York, 1982), Vol. 37, p. 1.Google Scholar
19. Marsiglio, F. and Carbotte, J.P., Solid State Comm. 63, 419 (1987).CrossRefGoogle Scholar
20. Garland, J.W. Jr., Phys. Rev. Lett. 11, 114 (1963).Google Scholar
21. Loong, C.K., et al. , (unpublished).Google Scholar
22. Jin, W., et al. , (unpublished).Google Scholar