Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-25T09:14:42.079Z Has data issue: false hasContentIssue false

Phase Stability and Role of Ternary Additions on Electronic and Mechanical Properties of Aluminum Intermetallics*

Published online by Cambridge University Press:  26 February 2011

A.J. Freeman
Affiliation:
Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208
T. Hong
Affiliation:
Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208
W. Lin
Affiliation:
Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208
Jian-Hua Xu
Affiliation:
Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208 Shanghai Institute of Metallurgy, Academy Science of China, Shanghai 200050, China
Get access

Abstract

First principles total energy local density method have addressed the problems of (i) bonding, cohesion and phase stability and (ii) the role of ternary additions, anti-phase boundaries (APB's) and other faults in determining the structural, electronic and mechanical properties of aluminum intermetallic alloys. A key goal has been to attempt to understand, at the electronic level, fundamental quantities that may be related to the crucial brittleness vs. ductility issue in high temperature Ni and Ti and other aluminides. Other contrasts between observed ductility properties of related systems (e.g., NiAl and RuAl) are related to their differing electronic and bonding properties, particularly the nature of p-d hybridization and the directional properties of their electronic charge distrubutions - especially for states near the Fermi energy.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Work supported by the Air Force Office of Scientific Research (grant Nos. 88–0346 and F49620–88-C-0052).

References

REFERENCES

[1] Lipsitt, H.A., in Properties of Advanced High Temperature Alloys, edited by Allen, S.M., Pelloux, R.M. and Widmer, R. (American Society of Metals, Metal Park, OH, 1986), p. 157;Google Scholar
High Temperature Aluminides and Intermetallics, edited by Whang, S.H., Liu, C.T., Pope, D.P. and Stiegler, J.O. (TMS Symp. Proc., PA, 1990).Google Scholar
[2] Kumar, K.S., Ternary Intermetallics in Aluminum-Refractory Metal — X (X = V, Cr, Mn, Fe, Co, Ni, Cu, Zn) system, (submitted to the International Materials Review, 1989).Google Scholar
[3] Fine, M.E., Metall.Trans. A6, 625 (1975);Google Scholar
Kubel, E.J., Adv. Mater. Pro. Metal Prog. 130, 43 (1986).Google Scholar
[4] Colgan, E.G., Materials Science Reports 5, 1 (1990).Google Scholar
[5] Pearson, W.B., A Handbook of Lattice Spacing and Structures of Metals and Alloys (Pergamon, Oxford, 1967), vol.2;Google Scholar
Structure Reports, edited by Pearson, W.B. (international Union of Crystallography, Utrecht, 1967) 32A, p.14.Google Scholar
[6] Xu, J.-h. and Freeman, A.J., J. Mater.Res. (to be submitted).Google Scholar
[7] Raman, A. and Schubert, K., Z. Metallkunde 40 (1965);Google Scholar
Seibold, A., Z. Metallkunde., 72, 712 (1981).Google Scholar
[8] Zedalis, M.S., Ph.D. thesis, Northwestern University, (1986).Google Scholar
[9] Subramanian, P.R. and Mendiratta, M.G., Mater. Res. Soc. Fall Meeting, Boston (1988);Google Scholar
Frasier, F.R. and Kaufman, M.J., Mater. Res. Soc.Google Scholar
[10] Xu, Jian-hua, Oguchi, T. and Freeman, A.J., Phys. Rev. B 35, 6940 (1987);CrossRefGoogle Scholar
Xu, Jian-hua and Freeman, A.J., Phys. Rev. B 40, 11927 (1989).Google Scholar
[11] Pasturel, A., Colinet, C. and Hicter, P., Physica, B+C 312B, 177 (1985).Google Scholar
[12] Kittel, C., Introduction to Solid State Physics, 5th ed. (1976).Google Scholar
[13] Ball, A. and Smallman, R.E., Acta Metallurgica 14, 1349, (1966),Google Scholar
Ball, A. and Smallman, R.E., Acta Metallurgica 16, 233 (1968).CrossRefGoogle Scholar
[14] Sainfort, G., Mem. Sci. Rev. Metall. 60, 125 (1963).Google Scholar
[15] Stoloff, N.S., in High-Temperature Ordered Intermetallic Alloys, MRS Symp. Proc. Vol. 39, edited by Koch, C.C., Liu, C.T. and Stoloff, N.S. (MRS, Pittsburgh, 1985), p. 3; and references therein.Google Scholar
[16] Stephens, J.R., in High-Temperature Ordered Intermetallic Alloys, MRS Symp. Proc. Vol. 39, edited by Koch, C.C., Liu, C.T. and Stoloff, N.S. (MRS, Pittsburgh, 1985), p. 381; and references therein.Google Scholar
[17] Vedula, K. and Stephens, J.R., in High-Temperature Ordered Intermetallic Alloys II, MRS Symp. Proc. Vol. 81, edited by Stoloff, N.S., Koch, C.C., Liu, C.T. and Izumi, O. (MRS, Pittsburgh, 1987), p. 381; and references therein.Google Scholar
[18] Baker, I. and Munroe, P.R., in High Temperature Aluminides And Intermetallics, edited by Whang, S.H., Liu, C.T. and Pope, D. (Metallurgical Society of AIME, Warrendale, PA, 1989), p. 425.Google Scholar
[19] Fleischer, R.L., Dimiduk, D.M. and Lipsitt, H.A., Annu. Rev. Mater. Sci. 19, 231 (1989); and references therein.Google Scholar
[20] See for example, Ball, A. and Smallman, R.E., Acta Metallurgica 14, 1517 (1966).Google Scholar
[21] von Mises, R., Z. Angew. Math. Mech. 8, 161 (1928).Google Scholar
[22] Yamagata, T. and Yoshida, H., Mater. Sci. and Eng. 12, 95 (1973).Google Scholar
[23] Dimiduk, D.M. and Miracle, D.B., in High-Temperature Ordered Intermetallic Alloys III, MRS Symp. Proc. Vol. 133, edited by Liu, C.T., Taub, A.I., Stoloff, N.S. and Koch, C.C. (MRS, Pittsburgh, 1989), p. 349.Google Scholar
[24] Marcinkowski, M.J., in Treatise on Materials Science and Technology, edited by Herman, H. (Academic Press, New York, 1974), p. 333.Google Scholar
[25] Hong, T. and Freeman, A.J., in High-Temperature Ordered Intermetallic Alloys III, MRS Symp. Proc. Vol. 133, edited by Liu, C.T., Taub, A.I., Stoloff, N.S. and Koch, C.C. (MRS, Pittsburgh, 1989), 75 (1989); (to appear in Phys. Rev. B).Google Scholar
[26] Ray, I.L.F., Crawford, R.C. and Cockayne, D.J.H., Phil. Mag. 21, 1027 (1970).CrossRefGoogle Scholar
[27] Mendiratta, M.G., Kim, H.-M. and Lipsitt, H.A., Met. Trans. A 15 395 (1984).Google Scholar
[28] Mendiratta, M.G., Ehlers, S.K., Dimiduk, D.M., Kerr, W.R., Mazdiyasni, S. and Lipsitt, H.A., in High-Temperature Ordered Intermetallic Alloys II, MRS Symp. Proc. Vol. 81, edited by Stoloff, N.S., Koch, C.C., Liu, C.T. and Izumi, O. (MRS, Pittsburgh, 1987), p. 393.Google Scholar
[29] Munroe, P.R. and Baker, I., Scr. Metall. 23, 495 (1989).CrossRefGoogle Scholar
[30] Mendiratta, M.G. and Law, C.C., J. Mater. Sci. 22, 607 (1987).CrossRefGoogle Scholar
[31] Potter, D.I., Mater. Sci. Eng. 5, 201 (1969)1970.Google Scholar
[32] Rudy, M. and Sauthoff, G., in High-Temperature Ordered Intermetallic Alloys, MRS Symp. Proc. Vol. 39, edited by Koch, C.C., Liu, C.T. and Stoloff, N.S. (MRS, Pittsburgh, 1985), p. 327.Google Scholar
[33] Crawford, R.C. and Ray, I.L.F., Phil. Mag. 35, 549 (1977).Google Scholar
[34] Fleischer, R.L., Field, R.D., and Briant, C.L., (to appear in Met. Trans.).Google Scholar
[35] Fraser, H.L., Smallman, R.E. and Loretto, M.H., Phil. Mag. 28, 65165, (1973);Google Scholar
Fraser, H.L., Loretto, M.H. and Smallman, R.E., Phil. Mag., 66777, (1973).Google Scholar
[36] Cooper, M.J., Phil. Mag. 89, 811, (1963).Google Scholar
[37] Villars, P. and Calvert, L. D., Pearson's Handbook of Crystallographic Data for Intermetallic Phases, (American Society for Metals, Metal Park, Ohio, 1986).Google Scholar
[38] Obrowski, R. N. W., Metall. 17, 108 (1963).Google Scholar
[39] Vedula, K., in Alloy Phase Stability, edited by Stocks, G.M. and Gonis, A. (Kluwer, Norwell, Massachusetts, 1989) p.29.Google Scholar
[40] Fu, C. L. and Yoo, M. H., Phil. Mag. Lett.(to appear).Google Scholar
[41] Williams, A. R., Kübler, J. and Gelatt, C. D. Jr, Phys. Rev. B 19, 6094 (1979).Google Scholar
[42] Carlsson, A. E., in High-Temperature Ordered Intermetallic Alloys II, MRS Symp. Proc. Vol. 81, edited by Stoloff, N. S., Koch, C. C., Liu, C. T. and Izumi, O. (MRS, Pittsburgh, 1987), p. 39.Google Scholar
[43] Noebe, R. D., Bowman, R. R., Kim, J. T., Larsen, M. and Gibala, R., in High Termperature Aluminides And Intermetallics, edited by Whang, S.H., Liu, C.T. and Pope, D. (Metallurgical Society of AIME, Warrendale, PA, 1989), p271.Google Scholar
[44] Stoloff, N.S., in Superalloys II, (John Wiley & Sons, New York, 1987).Google Scholar
[45] Mazdiyasni, S., Miracle, D.B., Dimiduk, D.M., Mendiratta, M.G. and Sabramanian, P.R., Scripta Metall. 23, 327 (1989).Google Scholar
[46] Maeland, A.J. and Narsimhan, D., in High-Temperature ordered Intermetallic Alloys III, (MRS, 1989), p. 723.Google Scholar
[47] Nicholson, D.M., Stocks, G.M., Temmerman, W.M., Sterne, P. and Pettifor, D.G., in High-Temperature Ordered Intermetallic Alloys III, (MRS, 1989), p. 17.Google Scholar
[48] Carlsson, A.E. and Meschter, P.J., J. Mater. Res. 4(5), 1060 (1989).Google Scholar
[49] Hong, T., Watson-Yang, T.J., Freeman, A.J., Oguchi, T. and Xu, J.-h., Phys. Rev. B 41, 12462, (1990).Google Scholar
[50] Hirth, J.P. and Lothe, J., Theory of Dislocations, 2nd ed., (John Wiley & Sons, New York, 1982).Google Scholar
[51] Murr, L.E., Interfacial Phenomena in Metals and Alloys, (Addison Wesley, New York, 1975).Google Scholar
[52] Xu, Jian-hua, Lin, W. and Freeman, A.J., Phys. Rev. B 43, Jan. (1991).Google Scholar
[53] Maclaren, J.M., Crampin, S., Vvedensky, D.D. and Eberhart, M.E., Phys. Rev. Lett. 63, 2586 (1989).Google Scholar
[54] Simon, J.P., J. Phys. F 9, 1425 (1979).Google Scholar
[55] Reed-Hill, R.E., in Physical Metallurgy Principles, 2nd ed. (D. Van Norstrand, New York, 1973) p.892.Google Scholar
[56] Smallman, R.E. and Dobson, P.S., Metal. Trans. 1, 2383 (1970).Google Scholar
[57] Freeman, A.J., Hong, T. and Xu, Jian-hua, in Atomic Simulation of Materials, edited by Vitek, V. and Srolovitz, D.J., (Plenum, New York, 1989) p.41.Google Scholar