Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T09:24:31.754Z Has data issue: false hasContentIssue false

Phase Separation Kinetics in Immiscible Liquids

Published online by Cambridge University Press:  26 February 2011

Lee H. Ng
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139.
Donald R. Sadoway
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139.
Get access

Abstract

The kinetics of phase separation in the succinonitrile-water system are being investigated. Experiments involve initial physical mixing of the two immiscible liquids at a temperature above the consolute, decreasing the temperature into the miscibility gap, followed by imaging of the resultant microstructure as it evolves with time. Refractive index differences allow documentation of the changing microstructures by noninvasive optical techniques without the need to quench the liquid structures for analysis.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Cahn, J. W. and Charles, R. J., Physics Chem. Glasses, 6, 181 (1965).Google Scholar
2. Haller, W., J. Chem. Phys., 42, 686 (1965).Google Scholar
3. Hopper, R. W. and Uhlmann, D. R., Disc. Faraday Soc., 56, 166 (1970).Google Scholar
4. Srinivasan, G. R., Tweer, J., Macedo, P. B., Sarker, A., and Haller, W., J. Non-cryst. Solids, 6, 221 (1971).Google Scholar
5. Seward, T. P. III, Uhlmann, D. R., and Turnbull, D., J. Am. Ceram. Soc., 51, 634 (1968)Google Scholar
6. Haller, W. and Macedo, P. B., Physics Chem. Glasses, 9, 153 (1968).Google Scholar
7. James, P. F. and McMillan, P. W. Haller, W. and Macedo, P. B., Physics Chem. Glasses, 11, 59 (1970); 11, 64 (1970).Google Scholar
8. Zarzycki, J. and Naudin, F., J. Non-cryst. Solids, 1, 215 (1969).Google Scholar
9. Koziol, J. K. and Sadoway, D. R., “Electrolyte Flow Patterns in Molten Salt Electrolysis Cells,” Energy Reduction Techniques in Metal Electrochemical Processes, Bautista, R. C. and Wesely, R., editors, TMSAIME, Warrendale, PA, 1985.Google Scholar
10. Burnett, D. G. and Douglas, R. W., Physics Chem. Glasses, 11, 125 (1970).Google Scholar
11. Uhlmann, D. R. and Kolbeck, A. G., Physics Chem. Glasses, 17, 146 (1976).Google Scholar
12. Srinivasa, G. R., Sarkar, A., Gupta, P. K., and Macedo, P. B., J. Noncryst. Solids, 20, 141 (1976).Google Scholar
13. Smith, J. E. Jr., Frazier, D. O., and Kaukler, W. F., Scripta Met., 18, 677 (1984).Google Scholar