Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-30T23:38:14.687Z Has data issue: false hasContentIssue false

Phase Constituent and Reverse Martensitic Transformation Temperature of PtTi-CoTi Diffusion Couple Heat-Treated at 1373K

Published online by Cambridge University Press:  09 February 2015

Hideki Hosoda
Affiliation:
Precision and Intelligence Laboratory, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan.
Satoshi Tsutsumi
Affiliation:
Precision and Intelligence Laboratory, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan.
Masaki Tahara
Affiliation:
Precision and Intelligence Laboratory, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan.
Tomonari Inamura
Affiliation:
Precision and Intelligence Laboratory, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan.
Kenji Goto
Affiliation:
Tanaka Kikinzoku Kogyo K.K., Hiratsuka, Kanagawa, Japan.
Hiroyasu Kanetaka
Affiliation:
Liaison Center for Innovative Dentistry, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, Japan.
Yoko Yamabe-Mitarai
Affiliation:
High Temperature Materials Unit, Functional Structure Materials Group, National Institute of Materials Science, Tsukuba, Ibaraki, Japan.
Get access

Abstract

The reverse martensitic (austenite) transformation temperatures (As) were investigated using a diffusion couple of PtTi and CoTi with a continuous compositional gradient. It was found that PtTi and CoTi form a complete solid solution of (Pt, Co)Ti at 1373K. Surface relief was formed by heating due to the austenite transformation. Judging from the formation of the surface patterns and the corresponding chemical compositions, As monotonously decreases with increasing Co content at a rate of -70K/at%Co, and As is estimated to be close to room temperature (RT) when the Co concentration is 15at%Co. Besides, micro Vickers hardness values measured at RT are minimized around 15at%Co.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Donkersloot, H. C. and Van Vucht, J. H. N., J. Less-Common Met., 20, 8391, (1970).CrossRefGoogle Scholar
Biggs, T., Witcomb, M. J. and Cornish, L. A., Mat. Sci. Eng. A 273275, 204207 (1999).CrossRefGoogle Scholar
Yamabe-Mitarai, Y., Hara, T., Miura, S. and Hosoda, H., Intermetallics, 18, 22752280 (2010).CrossRefGoogle Scholar
Biggs, T., Cortie, M. B., Witcomb, M. J. and Cornish, L. A., Metall. Mater. Trans.., 23A, 18811887 (2001).CrossRefGoogle Scholar
Khachin, V. N., Pushin, V. G., Sivokha, V. P., Kondrat’yev, V. V., Muslov, S. A., Voronin, V. P., Zolotukhin, Yu. S. and Yurchenko, L. I., Phys. Met. Metall., 67, 125135 (1989).Google Scholar
Lindquist, P. G. and Wayman, C. M., “The Engineering Aspects of Shape Memory Alloys”, edited by Duerig, T. W., Melton, K. N., Stöckel, D. and Wayman, C. M., Butterworth-Heinemann, London, 5868 (1990).Google Scholar
Takahashi, Y., Tsuji, M., Sakurai, J., Hosoda, H., Wakashima, K. and Miyazaki, S., Trans. Mat. Res. Soc. Jpn., 28, 627630 (2004).Google Scholar
Tsuji, M., Hosoda, H., Wakashima, K. and Yamabe-Mitarai, T., Mat. Res. Soc. Symp., 753, BB.5.52.16 (2003).Google Scholar
Wadood, A., Takahashi, M., Takahashi, S., Hosoda, H. and Yamabe-Mitarai, Y., Mat. Sci. Eng. A 564, 3441 (2013).CrossRefGoogle Scholar
Yamabe-Mitarai, Y., Hara, T., Miura, S. and Hosoda, H., Mat. Trans., 47, 650657 (2006).CrossRefGoogle Scholar
Yamabe-Mitarai, Y., Hara, T., Miura, S. and Hosoda, H., Mat. Sci. Forum, 19871990, 475-479, (2007); ibid., 539-543, 3273–3278(2007).Google Scholar
Yamabe-Mitarai, Y., Hara, T., Kitashima, T., Miura, S. and Hosoda, H., J. Alloys Comp.,577, suppl.1, S399S403 (2013).Google Scholar
Noebe, R., Gaydosh, D., Padula, S. II, Garg, A, Biles, T. and Nathal, M., SPIE Conf. Proc.,5761, Bellingham, WA, (2005): SPIE.Google Scholar
Kovarik, L., Yang, F., Garg, A., Diercks, D., Kaufman, M., Noebe, R. D. and Mills, M. J., Acta Mater., 58, 46604673 (2010).CrossRefGoogle Scholar
Hosoda, H., Tsuji, M., Mimura, M., Takahashi, Y., Wakashima, K. and Yamabe-Mitarai, T., Mat. Res. Soc. Symp., 753, BB.5.51.16 (2003).Google Scholar
Aoki, T., Tahara, M., Goto, K., Mitarai, Y., Kanetaka, H., Inamura, T. and Hosoda, H., Adv. Mater. Res., 922, 2530 (2014).CrossRefGoogle Scholar
Gupta, K. P., J. Phase Equilibria, 20, 6572 (1999).CrossRefGoogle Scholar
Hosoda, H., Hanada, S., Inoue, K., Fukui, T., Mishima, Y. and Suzuki, T., Intermetallics, 6, 291301 (1998).CrossRefGoogle Scholar
Takasugi, T. and Izumi, O., J. Mater. Sci., 23, 12651273 (1988).CrossRefGoogle Scholar
Yamamoto, T, Morizono, Y., Honjyo, J. and Nishida, M., Mat. Sci. Eng. A 438440, 327331 (2006).Google Scholar
Du, Y., Xu, H., Zhou, Y., Quyang, Y. and Jin, Z., Mat. Sci. Eng. A 448, 210215 (2007).Google Scholar
Ducher, R., Kainuma, R. and Ishida, K., J. Alloys and Comp., 466, 208213, (2008).CrossRefGoogle Scholar
Okimori, Y., Inamura, T., Hosoda, H. and Wakashima, K., Mat. Trans., 49, 19982005 (2008).CrossRefGoogle Scholar
Changfa, L., Yuping, R. and Gaowu, Q., Adv. Mater. Res.., 299300, 224227 (2011).CrossRefGoogle Scholar
Shastry, V. V., Divya, V. D., Azeem, M. A., Paul, A., Dye, D. and Ramamurty, U., Acta Mater., 61, 57335742 (2013).Google Scholar
Perkins, J., Edwards, G. R., Such, C. R., Johnson, J. M. and Allen, R. R., Shape Memory Effect in Alloys, ed. J. Perkins, , The Metall. Soc. AIME Proc., Plenum Press, NY, 273-299 (1975).Google Scholar
Duerig, T. W., Albrecht, J., Richter, D. and Fischer, P., Acta Mater., 30, 21612172 (1982).CrossRefGoogle Scholar