Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-07T23:58:32.078Z Has data issue: false hasContentIssue false

Phase Change Materials - From Structures to Kinetics

Published online by Cambridge University Press:  01 February 2011

Matthias Wuttig
Affiliation:
[email protected]. Physikalisches Institut IAAachen N/A D52056Germany
Wojciech Welnic
Affiliation:
[email protected], I. Physikalisches Institut IA, Aachen, N/A, D52056, Germany
Ralf Detemple
Affiliation:
[email protected], I. Physikalisches Institut IA, Aachen, N/A, D52056, Germany
Henning Dieker
Affiliation:
[email protected], I. Physikalisches Institut IA, Aachen, N/A, D52056, Germany
Johannes Kalb
Affiliation:
[email protected]´rwth-aachen.de, I. Physikalisches Institut IA, Aachen, N/A, D52056, Germany
Daniel Wamwangi
Affiliation:
[email protected], I. Physikalisches Institut IA, Aachen, N/A, D52056, Germany
Christoph Steimer
Affiliation:
[email protected], I. Physikalisches Institut IA, Aachen, N/A, D52056, Germany
Get access

Abstract

Phase change materials possess a unique combination of properties which include a pronounced property contrast between the amorphous and crystalline state, i.e. a high electrical and optical contrast. In particular the latter observation is indicative for a considerable structural difference between the amorphous and crystalline state. At the same time the crystallization of the amorphous state proceeds on a fast time scale. This raises the question how structure, properties and kinetics are related in phase change alloys. It will be demonstrated that only a small group of covalent semiconductors with octahedral-like coordination has the required property combination. This is related to their thermodynamic properties which govern the kinetics of crystallization.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ovshinsky, S.: Phys. Rev. Lett. 21, 1453 (1968).Google Scholar
2. Zhou, G.F., Mat. Sci. and Eng. A 304–306, 7380 (2001).Google Scholar
3. Wuttig, M. Nature Materials 4, 265 (2005).Google Scholar
4. Yamada, N. MRS Bulletin 21, 4850 (1996).Google Scholar
5. Lankhorst, M. and Ketelaars, B. and Wolters, R. Nature Materials 4, 347 (2005).Google Scholar
6. Friedrich, I. and Weidenhof, V. and Lenk, S. and Wuttig, M. Thin Solid Films 38, 389 (2001).Google Scholar
7. Welnic, W. Pamungkas, A. Detemple, R. Steimer, C. Blügel, S. and Wuttig, M. Nature Materials 5, 56 (2006).Google Scholar
8. Kolobov, A. Fons, P. Frenkel, A. Ankudinov, A. Tominaga, J. and Uruga, Tomoya, Nature Materials 3, 703 (2004).Google Scholar
9. Klein, M. Diploma Thesis RWTH Aachen (2006) and to be published.Google Scholar
10. Luo, M. and Wuttig, M. Advanced Materials 16, 439 (2004).Google Scholar
11. Coombs, J. Jongenelis, A. Es-Spiekman, W. van and Jacobs, B. J. Appl. Phys. 78, 4918 (1995).Google Scholar
12. Borg, H. Schijndel, M. van, Rijpers, J. Lankhorst, M. Zhou, G. Dekker, M. Ubbens, I. and Kuijper, M. Jpn. J. Appl. Phys. Borg, H. J. et al., Jpn. J. Appl. Phys. 40, 1592 (2001).Google Scholar
13. Weidenhof, V. Friedrich, I. Ziegler, S. and Wuttig, M. J. Appl. Phys. 89, 3168 (2001).Google Scholar
14. Pieterson, L. van, Schijndel, M. van, Rijpers, J. and Kaiser, M. Appl. Phys. Lett. 83, 1373 (2003).Google Scholar
15. Kalb, J. Spaepen, F. and Wuttig, M. Appl. Phys. Lett. 84, 5240 (2004).Google Scholar
16. Kalb, J. Wen, C. Spaepen, F.. Dieker, H. and Wuttig, M. J. Appl. Phys. 98, 54910 (2005).Google Scholar