Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T03:00:53.019Z Has data issue: false hasContentIssue false

Partially-Filled Skutterudites: Optimizing the Thermoelectric Properties

Published online by Cambridge University Press:  01 February 2011

G.S. Nolas
Affiliation:
R&D Division, Marlow Industries, Inc., 10451 Vista Park Road, Dallas, Texas 75238
M. Kaeser
Affiliation:
Department of Physics, Clemson University, Clemson, South Carolina 29634
R.T. Littleton IV
Affiliation:
Department of Physics, Clemson University, Clemson, South Carolina 29634
T.M. Tritt
Affiliation:
Department of Physics, Clemson University, Clemson, South Carolina 29634
H. Sellinschegg
Affiliation:
Department of Chemistry, University of Oregon, Eugene, Oregon 97403
D.C. Johnson
Affiliation:
Department of Chemistry, University of Oregon, Eugene, Oregon 97403
E. Nelson
Affiliation:
US Army Research Laboratory, Adelphi, Maryland 20783
Get access

Abstract

The skutterudite family of compounds continues to be of interest for thermoelectric applications due to the low thermal conductivity obtained when filling the voids with small diameter, large mass interstitials such as trivalent rare-earth ions. In the last few years there has been a substantial experimental and theoretical effort in attempting to understand the transport properties of these compounds in order to optimize their thermoelectric properties. One such approach involves partially-filling the voids in attempting to optimize the power factor while maintaining low thermal conductivity. In this report experimental research on skutterudites with the voids partially filled with heavy mass lanthanide and alkaline-earth ions is reported.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Nolas, G.S., Morelli, D.T. and Tritt, T.M., Annu. Rev. Mater. Sci. 29, 89 (1999), and references therein.Google Scholar
[2] Hornbostel, M.D., Hyer, E.J., Thiel, J., Edvalson, J.H., and Johnson, D.C., Inorg. Chem. 36, 4270 (1997),Google Scholar
Hornbostel, M.D., Hyer, E.J., Thiel, J., and Johnson, D.C., Jour. Am. Chem Soc. 119, 2665 5. (1997), andGoogle Scholar
Sellinschegg, H., Stuckmeyer, S.L., Hornbostel, J.D., and Johnson, D.C., Chem. Mater. 10, 1096 (1998)Google Scholar
[3] Takizawa, H., Miura, K., Ito, M., Suzuki, T. and Endo, T., J. Alloys Comp 282, 79 (1999).Google Scholar
[4] Nolas, G.S., Cohn, J.L. and Slack, G.A., Phys Rev B 58, 164 (1998).Google Scholar
[5] Morelli, D.T., Meisner, G.P., Chem, B., Hu, S. and Uher, C., Phys. Rev. B 56, 7376 (1997);Google Scholar
Meiner, G.P., Morelli, D.T., Hu, s., Yang, J. and Uher, C., Phys. Rev. Lett. 80, 3551 (1998).Google Scholar
[6] Sales, B.C., Chakoumakos, B.C., Mandrus, D., Phys Rev B 61, 2475 (2000).Google Scholar
[7] Nolas, G.S., Slack, G.A., Morelli, D.T., Tritt, T.M. and Ehrlich, A.C., J. Appl. Phys. 79, 4002 (1996).Google Scholar
[8] Evers, C.B.H., Jeitschko, W., Boonk, L., Braun, D.J., Ebel, T. and Scholz, U.D., J. Alloys Comp. 224, 184 (1995), and references therein.Google Scholar
[9] Chakoumakos, B.C., Sales, B.C., Mandrus, D. and Keppens, V., Acta. Cryst. B 55, 341, (1999), and references therein.Google Scholar
[10] Caillat, T., Borshchevsky, A. and Fleurial, J.-P., J. Appl. Phys. 80, 4442 (1996).Google Scholar
[11] Dilley, N.R., Freeman, E.J., Bauer, E.D. and Maple, M.B., Phys. Rev. B 58, 6287 (1998).Google Scholar
[12] Leithe-Jasper, A., Kaczorowski, D., Rogl, P., Bogner, J., Reissner, M., Steiner, W., Wiesinger, G. and Godart, C., Solid State Comm. 109, 395 (1999).Google Scholar
[13] Dilley, N.R., Bauer, E.D., Maple, M.B., Dordevic, S., Basov, D.N., Freibert, F., Darling, T.W., Migliori, A., Chakoumakos, B.C. and Sales, B.C. Google Scholar
[14] Chen, B., Xu, J., Uher, C., Morelli, D.T., Meisner, G.P., Fleurial, J.-P., Caillat, T. and Borshchevsky, A., Phys. Rev. B 55, 1476 (1997).Google Scholar
[15] Kaeser, M. A., Tritt, T.M., Nolas, G. S., Littleton, R T. IV, Alboni, P. and Pope, A. L., Bull. Am. Phys. Soc. 44, 48 (1999).Google Scholar
[16] Littleton, R. T. IV, Tritt, T. M., Kolis, J. W., and Ketchum, D., Phys. Rev. B 60, 13453 (1999).Google Scholar
[17] see for example Sellingschegg, H., Johnson, D.C., Nolas, G.S., Slack, G.A., Schujman, S.B., Mohammed, F., Tritt, T.M. and Nelson, E., Proceedings of the 17th International Conference on Thermoelectrics (IEEE, Catalog No. 98TH8365, Piscataway, NJ, 1998) p. 338, and other articles in this volume by the authors.Google Scholar