Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T09:49:32.758Z Has data issue: false hasContentIssue false

Oxygen Diffusion in La2−Xsrxcuo4−Y

Published online by Cambridge University Press:  26 February 2011

Elizabeth J. Opila
Affiliation:
Crystal Physics and Optical Electronics LaboratoryDepartment of Materials Science and EngineeringMassachusetts Institute of Technology Cambridge, MA 02139
Harry L. Tuller
Affiliation:
Crystal Physics and Optical Electronics LaboratoryDepartment of Materials Science and EngineeringMassachusetts Institute of Technology Cambridge, MA 02139
Bernhardt J. Wuensch
Affiliation:
Crystal Physics and Optical Electronics LaboratoryDepartment of Materials Science and EngineeringMassachusetts Institute of Technology Cambridge, MA 02139
Joachim Maier
Affiliation:
Crystal Physics and Optical Electronics LaboratoryDepartment of Materials Science and EngineeringMassachusetts Institute of Technology Cambridge, MA 02139 also Max Planck Institute for Metal Research Heisenbergstr.5,, Stuttgart 80
Get access

Abstract

Oxygen diffusivities in La2−xSrxCuO4−y (x×0, 0.07, 0.09, 0.12) single crystals were measured using an is 02 exchange technique followed by SIMS profiling. An interstitial diffusion model is proposed to explain the decrease in the oxygen diffusivity with increasing strontium content.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Routbort, J.L., Rothman, S.J., Flandermeyer, B.K., Nowicki, L.J., Baker, J.E., Defect and Diffusion Forum 59,213224 (1988).CrossRefGoogle Scholar
2. Cheong, S-W., Thompson, J.D., Fisk, Z., Pysica C 158,109126 (1989).Google Scholar
2A. Chailllout, C., Cheong, S.W., Fisk, Z., Lehmann, M.S., Marezio, M., Morosin, B., Schirber, J.E., Physica Scripta 129, 9799 (1989).CrossRefGoogle Scholar
3. Torrance, J.B., Tokura, Y., Nazzal, A.I., Bezinge, A., Huang, T.C., Parkin, S.S.P., Phys. Rev. Lett. 61 (9), 1127(1988).Google Scholar
4. Maier, J., Pfundtner, G., Tuller, H.L., Opila, E.J.,Wuensch, B.J., Proc. Satellite Symposia on High Temp.Superconductors, 7th CIMTECH, July 2-5, 1990, in press.Google Scholar
5. Picone, P.J., Jenssen, H.P., Gabbe, D.R., J. Crystal Growth 91, 463 (1988).Google Scholar
6. Vasquez, R.P, Hunt, B.D., Foote, M.C., Appl. Phys. Lett. 53 (26), 2692 (1988).CrossRefGoogle Scholar
7. Kilner, J.A., Steele, B.C.H., Ilkov, L., Solid State Ionics 12, 89 (1984).Google Scholar
8. Opila, E.J., Tuller, H.L., submitted to this proceedings.Google Scholar
9. Nguyen, N., Choisnet, J., Hervieu, M., Raveau, B., J. Solid State Chem. 39, 120 (1981).Google Scholar
10. Sreedhar, K., Ganguly, P., Phys. Rev. B 41 (1), 371 (1990).CrossRefGoogle Scholar