Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-30T23:46:49.162Z Has data issue: false hasContentIssue false

Over 12% Light to Hydrogen Energy Conversion Efficiency of Hydrogen Generation from Water: New System Concept, Concentrated Photovoltaic Electrochemical Cell (CPEC)

Published online by Cambridge University Press:  25 January 2013

Katsushi Fujii
Affiliation:
Global Solar plus Initiative, c/o RCAST, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904 JAPAN
Shinichiro Nakamura
Affiliation:
RIKEN Research Cluster for Innovation, Nakamura Lab., 2-1 Hirosawa, Wako, Saitama, 351-0198, JAPAN
Kentaroh Watanabe
Affiliation:
Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904 JAPAN
Behgol Bagheri
Affiliation:
Global Solar plus Initiative, c/o RCAST, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904 JAPAN
Masakazu Sugiyama
Affiliation:
School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656, JAPAN
Yoshiaki Nakano
Affiliation:
Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904 JAPAN
Get access

Abstract

Energy storage is a key technology for establishing a stand-alone renewable energy system. Current energy-storage technologies are, however, not suitable for such an energy system. They are cost ineffective and/or are with low energy-conversion efficiency. Hydrogen generation and storage from water by sunlight is one of these technologies. In this study, a simple concept of hydrogen generation from water by using sunlight, “concentrated photovoltaic electrochemical cell (CPEC)” is proposed. It is experimentally shown that the CPEC operates stably and achieves conversion efficiency from light to hydrogen energy of over 12%.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Maeda, T., Ito, H., Hasegawa, Y., Zhou, Z., and Ishida, M., Int. J. Hydrogen Energy 37, 4819 (2012).CrossRefGoogle Scholar
Maeda, K., Takata, T., Hara, M., Saito, N., Inoue, Y., Kobayashi, H., and Domen, K., J. Am. Chem. Soc. 127, 8286 (2005).CrossRefGoogle Scholar
Nozik, A. J. and Memming, R., J. Phys. Chem. 100, 13061 (1996).CrossRefGoogle Scholar
Sato, K., Fujii, K., Koike, K., Goto, T., and Yao, T., Phys. Stat. Sol. (c) 6, S635 (2009).CrossRefGoogle Scholar
Khaselev, O. and Turner, J. A., Science 280, 425 (1998).CrossRefGoogle Scholar
Reece, S. Y., Hamel, J. A., Sung, K., Jarvi, T. D., Esswein, A. J., Pijpers, J. J. H., Nocera, D. G., Science 334, 645 (2011).CrossRefGoogle Scholar
Licht, S., Halperin, L., Kalina, M., Zidman, M., and Halperin, N., Chem. Commun. 2003, 3006.CrossRefGoogle Scholar
Licht, S., Chitayat, O., Bergmann, H., Dick, A., Ayub, H., and Ghosh, S., Int. J. Hydrogen Energy 35, 10867 (2010).CrossRefGoogle Scholar
Dimroth, F., Peharz, G., Wittstadt, U., Hacker, B., Bett, A. W., Conference Record of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion (IEEE Cat. No. 06CH37747), p. 640 (2006).CrossRefGoogle Scholar
Peharz, G., Dimrorth, F., Wittstadt, U., Int. J. Hydrogen Energy 32, 3248 (2007).CrossRefGoogle Scholar
Cotal, H., Fetzer, C., Boisvert, J., Kinsey, G., King, R., Hebert, P., Yoon, H. and Karam, N., Energy Environ. Sci., 2, 174 (2009).CrossRefGoogle Scholar
King, R. R., Law, D. C., Edmondson, K. M., Fetzer, C. M., Kinsey, G. S., Yoon, H., Sherif, R. A., and Karam, N. H., Appl. Phys. Lett. 90, 183516 (2007).CrossRefGoogle Scholar
Yamaguchia, M., Takamoto, T., Araki, K., Solar Energy Mat. Solar Cells, 90, 3068 (2006).CrossRefGoogle Scholar