Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-28T06:26:55.255Z Has data issue: false hasContentIssue false

Out-of-phase Boundary (OPB) Nucleation in Layered Oxides

Published online by Cambridge University Press:  26 February 2011

Mark Zurbuchen
Affiliation:
[email protected], National Institute of Standards and Technology, 100 Bureau Dr MS 8520, Gaithersburg, MD, 20899, United States
James Lettieri
Affiliation:
[email protected], Penn State University
Yunfa Jia
Affiliation:
[email protected], Penn State University
Altaf H. Carim
Affiliation:
[email protected], US Department of Energy
Stephen K. Streiffer
Affiliation:
[email protected], Argonne National Laboratory
Darrell G. Schlom
Affiliation:
[email protected], Penn State University
Get access

Abstract

Out-of-phase boundaries (OPBs), planar faults between regions of a crystal that are misaligned by a fraction of a unit cell dimension, occur frequently in materials of high structural anisotropy. Rarely observed in the bulk, OPBs frequently exist in epitaxial films of layered complex oxides, such as YBCO-type, Aurivillius, and Ruddlesden-Popper phases, and frequently propagate through the entire thickness of a film, due to their large offset and the improbability of opposite-sign OPB annihilation. OPBs have previously been demonstrated to have a significant impact upon properties, so it is important to understand their generation. These faults arise through the same few mechanisms in the various layered complex oxides.

An effort is made to unify the discussion of nucleation of these defects, common to layered oxide materials. OPBs can nucleate at the film-substrate interface (primary) via steric, chemical, or misfit mechanisms, or post-growth (secondary) through crystallographic shear during decomposition of volatile components. Examples of the mechanisms observed during high-resolution transmission electron microscopy (HRTEM) study of Aurivillius and Ruddlesden-Popper phases are presented. A method for estimating the relative OPB density in a film from correlation of x-ray diffraction (XRD) θ-2θ data with TEM information on OPBs is presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Ruddlesden, S. N. and Popper, P., Acta Cryst. 10, 538539 (1957); 11, 54-55 (1958).Google Scholar
2 Aurivillius, B., Ark. Kemi 1, 463 (1950); 1, 499 (1950); 2, 519 (1951); 5, 39 (1953).Google Scholar
3 Aurivillius, B. and Fang, P. H., Phys. Rev. 126, 893 (1962).Google Scholar
4 Dion, M., Ganne, M., and Tournoux, M., Mater. Res. Bull. 16, 1429 (1981);Google Scholar
Jacobson, A. J., Lewandowski, J. T., and Johnson, J. W., J. Less-Common Met. 116, 137 (1986).;Google Scholar
Gopalakrishnan, J., Bhat, V., and Raveau, B., Mater. Res. Bull. 22, 413 (1987).Google Scholar
5 Cava, R. J., in Advances in Superconductivity, Proceedings of the 1st International Symposium on Superconductivity, Eds. Kitazawa, K. and Ishiguro, T. (Springer-Verlag, Tokyo, 1989), pp 159164.Google Scholar
6 Hauck, J. and Mika, K., Supercond. Sci. Technol. 11 614 (1998).Google Scholar
7 Haeni, J. H., Theis, C. D., Schlom, D. G., Tian, W., Pan, X. Q., Chang, H., Takeuchi, I., and Xiang, X. D., Appl. Phys. Lett. 78, 3292 (2001).Google Scholar
8 Zurbuchen, M. A., Schubert, J., Jia, Y., Comstock, D. J., Tian, W., Sherman, V. O., Fong, D., Hawley, M. E., Tagantsev, A. K., Streiffer, S. K., and Schlom, D. G., submitted to Nature: Materials (2005).Google Scholar
9 Zurbuchen, M. A., Jia, Y., Knapp, S. K., Carim, A. H., Schlom, D. G., Zou, L-N., and Liu, Y., Appl. Phys. Lett. 78, 2351 (2001).Google Scholar
10 Zurbuchen, M. A., Schlom, D. G., and Streiffer, S. K., Appl. Phys. Lett. 79, 887 (2001).Google Scholar
11 Cowley, J. M., Phys. Rev. A 138, 1384 (1965).Google Scholar
12 Allpress, J. G., Mater. Res. Bull. 4, 707 (1969).Google Scholar
13 Lettieri, J., Jia, Y., Fulk, S. J., Schlom, D. G., Hawley, M. E., and Brown, G. W., Thin Solid Films 379, 64 (2000).Google Scholar
14 Zurbuchen, M. A., Jia, Y., Knapp, S., Carim, A. H., Schlom, D. G., and Pan, X. Q., Appl. Phys. Lett. 83, 3891 (2003).Google Scholar
15 Zurbuchen, M. A., Ph. D. Dissertation, (The Pennsylvania State University, 2002).Google Scholar
16 Zurbuchen, M. A., Lettieri, J., Asayama, G., Jia, Y., Knapp, S., Carim, A. H., Schlom, D. G., Pan, X. Q., and Streiffer, S. K., submitted to J. Mater. Res. (2005).Google Scholar
17 Zurbuchen, M. A., Jia, Y., Knapp, S. K., Carim, A. H., Schlom, D. G., and Pan, X. Q., Appl. Phys. Lett. 83, 3891 (2003).Google Scholar