Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T03:34:55.887Z Has data issue: false hasContentIssue false

Origins of Parasitic Emissions from 353 nm AlGaN-based UV LEDs over SiC Substrates

Published online by Cambridge University Press:  01 February 2011

Ji-Soo Park
Affiliation:
[email protected], North Carolina State University, Materials Science and Engineering, 1001 Capability Dr. Research Building One, Rm240, Raleigh, NC, 27695-7919, United States, (919) 515-1841, (919) 515-3419
Daryl W Fothergill
Affiliation:
[email protected], North Carolina State University, Electrical and Computer Engineering, United States
Patrick Wellenius
Affiliation:
[email protected], North Carolina State University, Electrical and Computer Engineering, United States
Seann M. Bishop
Affiliation:
[email protected], North Carolina State University, Materials Science and Engineering, United States
John F. Muth
Affiliation:
[email protected], North Carolina State University, Electrical and Computer Engineering, United States
Robert F. Davis
Affiliation:
[email protected], North Carolina State University, Materials Science and Engineering, United States
Get access

Abstract

The effects of p-GaN capping layers and p-type carrier-blocking layers on the occurrence of parasitic emissions from 353 nm AlGaN-based LEDs have been investigated. LEDs without a p-type Al0.25Ga0.75N carrier-blocking layer showed a shoulder peak at ∼370 nm due to electron overflow into the p-Al0.10Ga0.90N cladding layer and subsequent electron-hole recombination in the acceptor levels. Broad emission between 380 and 450 nm from LEDs having a p-GaN capping layer was caused by 420 nm luminescence from the p-GaN capping layer, which was optically pumped by 353 nm UV emission from the quantum wells. Broad, defect-related luminescence at ∼520 nm was emitted from the AlGaN layers within the quantum wells.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Adivarahan, V., Sun, W.H., Chitnis, A., Shatalov, M., Wu, S., Maruska, H.P., and Khan, M.A., Appl. Phys. Lett. 85, 2175 (2004).CrossRefGoogle Scholar
2. Shatalov, M., Chitnis, A., Mandavilli, V., Pachipusulu, R., Adivarahan, V., Wu, S., Simin, G., Khan, M.A., Tamulaitis, G., Sereika, A., Yilmaz, I., Shur, M.S., and Gaska, R., Appl. Phys. Lett., 82, 167 (2003).Google Scholar
3. Hanlon, A., Pattison, P.M., Keading, J.F., Sharma, R., Fini, P., and Nakamura, S., Jpn. J. Appl. Phys., 42, L628 (2003).CrossRefGoogle Scholar
4. Otsuka, N., Tsujimura, A., Hasegawa, Y., Sugahrha, G., Kume, M., and Ban, Y., Jpn. J. Appl. Phys. 39, L445 (2000).CrossRefGoogle Scholar
5. Chen, C., Adivarahan, V., Yang, J., Shatalov, M., Kuokstis, E., and Khan, M.A., Jpn. J. Appl. Phys. 42, L1039 (2003).CrossRefGoogle Scholar
6. Park, J.-S., Reitmeier, Z.J., Fothergill, D., Zhang, X., Muth, J.F., and Davis, R.F., Mater. Sci. Eng. B (in press)Google Scholar
8. Nishida, T., Saito, H., and Kobayashi, N., Appl. Phys. Lett. 78, 399 (2001).CrossRefGoogle Scholar
9. Akita, K., Nakamura, T., and Hirayama, H., Phys. Status Solidi A 201, 2642 (2004).Google Scholar
10. Hirayama, H., Akita, K., Kyono, T. and Nakamura, T., Phys. Status Solidi A 201, 2639 (2004).Google Scholar
11. Suzuki, M., Nishio, J., Onomura, M., and Hongo, C., J. Cryst. Growth 189/190, 511 (1998).CrossRefGoogle Scholar
12. Katsuragawa, M., Sota, S., Komiro, M., Anbe, C., Takeuchi, T., Sakai, H., Amano, H., and Akasaki, I., J. Cryst. Growth 189/190, 528 (1998).Google Scholar
13. Katona, T.M., Craven, M.D., Speck, J.S., and DenBaars, S.P., Appl. Phys. Lett. 85, 1350 (2004).CrossRefGoogle Scholar
14. Park, J.-S., Fothergill, D.W., Zhang, X., Reitmeier, Z.J., Muth, J.F., and Davis, R.F., Jpn. J. Appl. Phys. 44, 7254 (2005).CrossRefGoogle Scholar
15. Viswanath, A.K., Shin, E., Lee, J.I., Yu, S., Kim, D., Kim, B., Choi, Y., and Hong, C.-H., J. Appl. Phys. 83, 2272 (1998).Google Scholar
16. Oh, E., Park, H., and park, Y., Appl. Phys. Lett. 72, 70 (1998)CrossRefGoogle Scholar
17. Nakamura, S., iwasa, N., Senoh, M., and Mukai, T., Jpn. J. Appl. Phys. 31, 1258 (1992).CrossRefGoogle Scholar
18. Smith, M., Chen, G.D., Lin, J.Y., Jiang, H.X., Salvador, A., Sverdlov, B.N., Botchkarev, A., Morkoc, H., and Goldenberg, B., Appl. Phys. Lett. 68, 1883 (1996).CrossRefGoogle Scholar
19. Myoung, J.M., Shim, K.H., Kim, C., Gluschenkov, O., Kim, K., Kim, S., Turnbull, D.A., and Bishop, S.G., Appl. Phys. Lett. 69, 2722 (1996).CrossRefGoogle Scholar
20. Kaufmann, U., Kunzer, M., Maier, M., Obloh, H., Ramakrishnan, A., Santic, B., and Schlotter, P., Appl. Phys. Lett. 71, 1326 (1998).Google Scholar
21. Eckey, L., Von Gfug, U., Holst, J., Hoffmann, A., Kaschner, A., Siegle, H., Thomsen, C., Schineller, B., Heime, K., Heuken, M., Schon, O., and Beccard, R., J. Appl. Phys. 84, 5828 (1998).CrossRefGoogle Scholar
22. Kim, K., Harrison, J.G., J. Vac. Sci. Technol. A21, 134 (2003).CrossRefGoogle Scholar
23. Nakamura, S. and Mukai, T., Jpn. J. Appl. Phys. 31, L1457 (1992).CrossRefGoogle Scholar
24. Singh, R., Molnar, R. J., Unlu, M. S., and Moustakas, T. D., Appl. Phys. Lett. 64, 336 (1994).CrossRefGoogle Scholar
25. Grieshaber, W., Shubert, E. F., Goepfert, I. D., Karlicek, R. F. Jr., Schurman, M. J. and Tran, C., J. Appl. Phys. 80, 4615 (1996).CrossRefGoogle Scholar
26. Reshchikov, M.A., and Korotkov, R.Y., Phys. Rev. B 64, 115205 (2001).CrossRefGoogle Scholar