Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T14:16:51.902Z Has data issue: false hasContentIssue false

Origin of the Infrared Band From Porous Silicon

Published online by Cambridge University Press:  28 February 2011

G. Mauckner
Affiliation:
Universität Ulm, 89069 Ulm, Germany
J. Hamann
Affiliation:
Universität Ulm, 89069 Ulm, Germany
W. Rebitzer
Affiliation:
Universität Ulm, 89069 Ulm, Germany
T. Baier
Affiliation:
Universität Ulm, 89069 Ulm, Germany
K. Thonke
Affiliation:
Universität Ulm, 89069 Ulm, Germany
R. Sauer
Affiliation:
Universität Ulm, 89069 Ulm, Germany
Abt. Halbleiterphysik
Affiliation:
Universität Ulm, 89069 Ulm, Germany
Get access

Abstract

The photoluminescence (PL) infrared (IR)-band of p-doped porous Si (PS) films is studied by steady-state and time-resolved PL and by photoluminescence excitation (PLE) in detail. In analogy to the S-band in the visible the IR-band shifts to higher energies with reduced average nanocrystal size. The IR- and S-bands are very different in their decay behavior and in their recombination lifetimes. The temperature-dependent PL intensity shows non-exponential decay with lifetime distributions in the nsec-µsec range in contrast to the stretched exponential decay shape of the S-band corresponding to lifetime distributions in the μsec -msec range. The origin of the IR-band is likely related to radiative recombination at deep defects in Si nanocrystals with quantum-upshifted band gaps.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Canham, L., New Scientist 10, 23 (1993)Google Scholar
2 Calcott, P.D.J., Nash, K.J., Canham, L.T., Kane, M.J., and Brumhead, D., J. Lum. 57, 257 (1993)Google Scholar
3 Pavesi, L. and Ceschini, M., Phys. Rev. B 48, 17625 (1993)Google Scholar
4 Mauckner, G., Thonke, K., Baier, T., Walter, T., and Sauer, R., J. Appl. Phys. 75, 4167 (1994)Google Scholar
5 Fojtik, A. and Henglein, A., Chem. Phys. Letters 221, 363 (1994)Google Scholar
6 Pickering, C., Beale, M.I.J., Robbins, D.J., Pearson, P.J., and Greef, R., J. Phys. C 17, 6535 (1984)Google Scholar
7 Mochizuki, Y., Mizuta, M., Ochiai, Y., Matsui, S., and Ohkubo, N., Phys. Rev. B 46, 12353 (1992)Google Scholar
8 Koch, F., Mater. Res. Soc. Symp. Proc. 298, 319 (1993)Google Scholar
9 Fauchet, P.M., Ettedgui, E., Raisanen, A., Brillson, L.J., Seiferth, F., Kurinec, S.K., Gao, Y., Peng, C., and Tsybeskov, L., Mater. Res. Soc. Symp. Proc. 298, 217 (1993)Google Scholar
10 Baier, T., Walter, T., Mauckner, G., Schneider, J., Thonke, K., and Sauer, R., Rev. Sci. Instrum. 65, 2890 (1994)Google Scholar
11 Münder, H., Berger, M.G., Frohnhoff, S., Thönissen, M., and Lüth, H., J. Lum. 57, 5 (1993)Google Scholar
12 Mauckner, G., Rebitzer, W., Thonke, K., and Sauer, R., Solid State Commun., 91, 717 (1994)Google Scholar
13 van Buuren, T., Tiedje, T., Dahn, J.R., and Way, B.M., Appl. Phys. Lett. 63, 2911 (1993)Google Scholar
14 Suda, Y., Ban, T., Koizumi, T., Koyama, H., Tezuka, Y., Shin, S., and Koshida, N., Jpn. J. Appl. Phys. 33, 581 (1994)Google Scholar
15 Kato, Y., Ito, T., and Hiraki, H., Jpn. J. Appl. Phys. 27, L1406 (1988)Google Scholar
16 Meyer, B.K., Petrova-Koch, V., Muschik, T., Linke, H., Omling, P. and Lehmann, V., Appl. Phys. Lett. 63, 1930 (1993)Google Scholar
17 Mauckner, G., Hamann, J., Rebitzer, W., Baier, T., Thonke, K. and Sauer, R., (submitted to Applied Physics Letters)Google Scholar
18 Grivickas, V., Linnros, J. and Tellefsen, J.A., E-MRS Conference, Symposium F (1994)Google Scholar
19 Meyer, B.K., Hofmann, D.M., Stadler, W., Petrova-Koch, V., Koch, F., Omling, P., and Emanuelsson, P., Appl. Phys. Lett. 63, 2120 (1993)Google Scholar
20 von Bardeleben, H.J., Stievenard, D., Grosman, A., Ortega, C. and Siejka, J., Phys. Rev. B 47, 10899 (1993)Google Scholar