Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-26T08:33:57.007Z Has data issue: false hasContentIssue false

Optoelectronic Properties of High-Gap Amorphous Silicon-Carbon Alloys

Published online by Cambridge University Press:  15 February 2011

V. Chu
Affiliation:
Instituto Engenharia de Sistemas e Computadores (INESC), Rua Alves Redol, 9, 1000 Lisboa, Portugal
J. P. Conde
Affiliation:
Instituto Superior Técnico (IST), Dept. of Physics, Av. Rovisco Pais, 1096 Lisboa, Portugal
P. Brogueira
Affiliation:
Instituto Superior Técnico (IST), Dept. of Physics, Av. Rovisco Pais, 1096 Lisboa, Portugal
P. Micaelo
Affiliation:
Instituto Engenharia de Sistemas e Computadores (INESC), Rua Alves Redol, 9, 1000 Lisboa, Portugal Instituto Superior Técnico (IST), Dept. of Physics, Av. Rovisco Pais, 1096 Lisboa, Portugal
J. P. Jarego
Affiliation:
Instituto Engenharia de Sistemas e Computadores (INESC), Rua Alves Redol, 9, 1000 Lisboa, Portugal Instituto Superior Técnico (IST), Dept. of Physics, Av. Rovisco Pais, 1096 Lisboa, Portugal
M. F. da Silva
Affiliation:
Instituto Tecnologico e Nuclear (ITN), Estrada Nacional n° 10, 2685 Sacavém, Portugal
J. C. Soares
Affiliation:
Centro de Fisica Nuclear da Universidade de Lisboa (CFNUL), Av. Prof. Gama Pinto 2, 1699 Lisboa, Portugal
Get access

Abstract

The dependence of the properties of hydrogenated amorphous silicon-carbon alloys deposited with a 1:10 silane (SiH4) to methane (CH4) or ethylene (C2H4) gas flow ratios with the hydrogen dilution, deposition pressure and power is studied. In methane-based films the carbon content shows a decrease (from ≈0.75 to 0.55) with increasing hydrogen dilution from 0 to 98%, while the ethylene-based films show no dependence of the carbon fraction (≈0.9) on hydrogen dilution. The photoconductivity shows an increase for hydrogen dilutions above 90= for both methane and ethylene-based films. While this increase is attributed, in the case of methane, to the observed decrease in carbon content, no corresponding decrease in carbon content is observed in the ethylene-based films, suggesting a decrease in the density of recombination centers with hydrogen dilution. The Urbach tail and the room-temperature photoluminescence peak correlate with carbon content independent of the carbon source-gas and deposition conditions used.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tawada, Y., Okamoto, H., and Hamakawa, Y., Appl. Phys. Lett. 39, 237 (1981).Google Scholar
2. Matsuda, A. and Tanaka, K., J. of Non-Cryst. Solids 97–98, 1367 (1987).Google Scholar
3. Galloni, R., Rizzoli, R., Summonte, C., Demichelis, F., Giorgis, F., Pirri, C.F., Tresso, E., Ambrosone, G., Catalanotti, C., Coscia, U., Rava, P., Della Mea, G., Rigato, V., Madan, A., Zignani, F., Mat. Res. Soc. Symp. Proc. 336, 517 (1994).Google Scholar
4. Baker, S.H., Spear, W.E. and Gibson, R.A.G., Phil. Mag. B 62, 213 (1990).Google Scholar
5. Roberston, J., Phil. mag. B 66, 615 (1992).Google Scholar
6. Solomon, I., Schmidt, M.P., and Tran-Quoc, H., Phys. Rev. B 38, 9895 (1988).Google Scholar
7. Engemann, D., Fischer, R., Knecht, J., Appl. Phys. Lett. 32. 567 (1978).Google Scholar
8. Kruangam, D., Endo, T., Wei, G.P., Nonomura, S., Okamoto, H. and Hamakawa, Y., J. Non-Cryst. Solids 77&78, 1429 (1985).Google Scholar
9. Jackson, W.B. and Amer, N.M., Phys. Rev. B 25, 5559 (1982).Google Scholar
10. van Swaaij, R.A.C.M.M., Berntsen, A.J.M., van Sark, W.G.J.H.M., Herremans, H., Bezemer, J., and van der Weg, W.F., J. Appl. Phys. 76, 251 (1994).Google Scholar
11. Katayama, Y., Usami, K., and Shimada, T., Phil. Mag. B 43, 283 (1981).Google Scholar
12. Ohtani, N., Katsuno, M., Futagi, T., Ohta, Y., Mimura, H., and Kawamura, K., Jpn. J. Appl. Phys. 30, L1539 (1991).Google Scholar