Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T09:36:15.875Z Has data issue: false hasContentIssue false

Optical and structural prorerties of InAs epilayer on graded InGaAs

Published online by Cambridge University Press:  17 March 2011

Gu Hyun Kim
Affiliation:
Dept of Physics, Chungbuk National Univ, Chungju, Korea
Jung Bum Choi
Affiliation:
Dept of Physics, Chungbuk National Univ, Chungju, Korea
Joo In Lee
Affiliation:
Materials Evaluation Center, Korea Research Institute of Standards and Science (KRISS), Taejon, Korea
Se-Kyung Kang
Affiliation:
Materials Evaluation Center, Korea Research Institute of Standards and Science (KRISS), Taejon, Korea
Seung Il Ban
Affiliation:
Materials Evaluation Center, Korea Research Institute of Standards and Science (KRISS), Taejon, Korea
Jin Soo Kim
Affiliation:
Dept. of Information and Communications, Kwangju Institute of Science and Technology (KJIST), Kwangju, Korea
Jong Su Kim
Affiliation:
Department of physics, Yeungnam University, Kyongsan, Korea
Sang Heon Lee
Affiliation:
School of Electronic and Electrical Engineering, Kyungpook National University Taegu, Korea
Jae-Young Leem*
Affiliation:
Dept. of Optical Engineering, Inje University, Kimhae, Korea
*
Corresponding Author: [email protected]
Get access

Abstract

We have studied infrared photoluminescence (PL) and x-ray diffraction (XRD) of 400 nm and 1500 nm thick InAs epilayers on GaAs, and 4 nm thick InAs on graded InGaAs layer with total thickness of 300 nm grown by molecular beam epitaxy. The PL peak positions of 400 nm, 1500 nm and 4 nm InAs epilayer measured at 10 K are blue-shifted from that of InAs bulk by 6.5, 4.5, and 6 meV, respectively, which can be largely explained by the residual strain in the epilayer. The residual strain caused by the lattice mismatch between InAs and GaAs or graded InGaAs/GaAs was observed from XRD measurements. While the PL peak position of 400 nm thick InAs layer is linearly shifted toward higher energy with increase in excitation intensity ranging from 10 to 140 mW, those of 4 nm InAs epilayer on InGaAs and 1500 nm InAs layer on GaAs is gradually blue-shifted and then, saturated above a power of 75 mW. These results suggest that adopting a graded InGaAs layer between InAs and GaAs can efficiently reduce the strain due to lattice mismatch in the structure of InAs/GaAs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Verdin, A., Gas Analysis Instrumentation (Wiley, New York, 1975).Google Scholar
2. Harbeke, G., Madelung, O., and Rossler, U., Landolt-Bornstein 17a, edited by Madelung, O. (Springer, Berlin, 1982).Google Scholar
3. Matveev, B., Zotova, N., Karandashov, S., Remennyi, M., II’inskaya, N., Stus, N., Shustov, V., Talalakin, G., and Malinen, J., IEE Proc.: Optoelectron. 145, 254 (1998).Google Scholar
4. Esina, N. P., Zotova, N. V., Markov, I. I., Matveev, B. A., Rogachev, A. A., Stus, N. M., and Talalakin, G. N., J. Appl. Spectrosc. 42, 465 (1985).Google Scholar
5. Parry, M. K., and Krier, A., Electron. Lett. 30, 1968 (1994).Google Scholar
6. Popov, A., Sherstnev, V., Yakovlev, Y., Civis, S., and Zelinger, Z., Spectrochim. Acta 6, 821 (1998).Google Scholar
7. Mao, Y. and Kreir, A., Infrared Phys. Technol. 38, 397(1997).Google Scholar
8. Popov, A., Sherstnev, V., Yakovlev, Yu, Baranov, A. N., and Alibert, C., Electron. Lett. 33, 86 (1997).Google Scholar
9. Houzay, F., Guille, C., Moison, J. M., Henoc, P., and Barthe, F., J. Cryst. Growth 81, 67 (1987).Google Scholar
10. Munekata, H., Chang, L. L., Woronick, S. C., and Kao, Y. H., J. Cryst. Growth 81, 237 (1987).Google Scholar
11. Grober, Robert D., Drew, H. D., Chyi, Jen-Inn, Kalem, S., and Morkoc, H., J. Appl. Phys. 65, 4079 (1989).Google Scholar
12. Krier, A., Gao, H. H., and Sherstnew, V. V., J. Appl. Phys. 85, 8419 (1999).Google Scholar
13. Feng, Z. M., Ma, K. Y., Cohen, R. M., and Stringfellow, G. B., Appl. Phys. Lett. 59, 1446(1991).Google Scholar
14. Lacrox, Y., Tran, C. A., Watkins, S. P., and Thewalt, M. L. W., Appl. Phys. Lett. 66, 1101(1995).Google Scholar
15. Baldereschi, A., and Lipari, N. C., Phys. Rev. B 3, 439(1971).Google Scholar
16. Lacrox, Y., Tran, C. A., Watkins, S. P., and Thewalt, M. L. W., J. Appl. Phys. 80, 6416 (1996).Google Scholar
17. Kruse, P. W., McGlauchlin, L. D., and McQuistan, R. B., Infrared Technology (John Wiley & Sons, New York., 1961).Google Scholar
18. Kim, G. H., Choi, J. B., Leem, J.-Y., Lee, J. I., Noh, S. K., Kim, Jong Su, Kim, J. S., Kang, S.-K., and Ban, S. I., J. Cryst. Growth 234, 110 (2001).Google Scholar
19. Lord, S. M., Pezeshki, B., Kim, S. D., and Harris, J. S., J. Cryst. Growth 127, 759 (1993).Google Scholar
20. Sacedon, A., Gonzalez-Sanz, F., Calleja, E., Munoz, E., Monlina, S. I., Pacheco, F. J., Araujo, D., Garcia, R., Lourenco, M., Yang, Z., Kidd, P., and Dunstan, E., Appl. Phys. Lett. 66, 3334 (1995.)Google Scholar
21. Kidd, P., Dunstan, D. J., Colson, H. G., Lourenco, M. A., Sacedon, A., Gonzalez-Sanz, F., Gonzalez, L., Gonzalez, Y., Garcia, R., Gonzalez, D., Pacheco, F. J., and Goodhew, P. J., J. Cryst. Growth 169, 649 (1996)Google Scholar
22. Bosacchi, A., Riccardis, A. C., Frigeri, P., Franchi, S., Ferrari, C., Gennari, S., Lazzrini, L., Nasi, L., Salviati, G., Drigo, A. V., and Romanato, F., J. Cryst. Growth 175/176, 1009 (1997)Google Scholar
23. Ferrari, C., Gennari, S., Franchi, S., Lazzrini, L., Natali, M., Romanato, F., Drigo, A. V., Baruchel, J., J. Cryst. Growth 205, 474 (1999)Google Scholar
24. JCPDS-International Center for Diffrection Data, v. 1.30 (1997)Google Scholar