Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T16:40:30.603Z Has data issue: false hasContentIssue false

Optical and Magnetic Processes and the Side Chains of Diacetylenic Materials

Published online by Cambridge University Press:  25 February 2011

Daniel J Sandman
Affiliation:
GTE Laboratories Incorporated, 40 Sylvan Road, Waltham, Massachusetts 02254
Gregory P. Hamill
Affiliation:
GTE Laboratories Incorporated, 40 Sylvan Road, Waltham, Massachusetts 02254
Mark Levinson
Affiliation:
GTE Laboratories Incorporated, 40 Sylvan Road, Waltham, Massachusetts 02254
Philip G. Rossoni
Affiliation:
GTE Laboratories Incorporated, 40 Sylvan Road, Waltham, Massachusetts 02254
Elizabeth A Yost
Affiliation:
GTE Laboratories Incorporated, 40 Sylvan Road, Waltham, Massachusetts 02254
Georgia C. Papaefthymiou
Affiliation:
Francis Bitter National Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Get access

Abstract

Similarities in the molecular energy levels of alkylcarbazoles and aliphatic nitroxides motivate the detailed study of 4,4′-(butadiyne-l,4-diyl)-bis-(2,2,6,6-tetramethyl-4-hydroxypiperidin-l-oxyl) () as a precursor to a ferromagnetic polymer. A more convenient synthetic route to is reported, and an X-ray-induced transformation of the β-phase of to the α-phase has been observed. The magnetic properties of and derived polymers have been studied using a SQUID system. The observed level of ferromagnetism found in samples of polymerized is comparable to the amount of trace iron materials detected in these samples.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sandman, D.J., ed., Crvstallographically Ordered Polymers, American Chemical Society Books, Washington, D.C. (1987).Google Scholar
2. Bloor, D. and Chance, R.R., eds., Polydiacetylenes, Martinus Nijhoff, Nordrecht, Boston (1985).Google Scholar
3. Cantow, H.-J., ed., Polydiacetylenes, Advances in Polymer Science, Vol. 63, Springer Verlag, Berlin, Heidelberg (1984).Google Scholar
4. Carter, G.M., Thakur, M.K., Hryniewicz, J.V., Chen, Y.J., and Meyler, S.E., in [1], pp. 168–176.Google Scholar
5. Sandman, D.J. and Chen, Y.J., Polymer, 30, 1027 (1989).CrossRefGoogle Scholar
6. Sandman, D.J., presented at the 9th International Conference on the Chemistry of the Organic Solid State, Como, Italy (July 2–7, 1989).Google Scholar
7. Sandman, D.J. and Chen, Y.J., Synthetic Metals, 28, D613 (1989).CrossRefGoogle Scholar
8. Schott, M. and Wegner, G., Nonlinear Optical Properties of Organic Molecules and Crystals, ed. Chemla, D.S. and Zyss, J., Academic Press, 1987, Vol. 2, pp. 39.CrossRefGoogle Scholar
9. Hood, R.J., Müller, H., Eckhardt, C.J., Chance, R.R., and Yee, K.C., Chem. Phys. Lett. 54, 295 (1978).Google Scholar
10. Sebastian, L. and Weiser, G., Chem. Phys. 62, 447 (1981).Google Scholar
11. Lochner, K., Bässler, H., Sebastian, L., Weiser, G., Wegner, G., and Enkelmann, V., Chem. Phys. Lett., 78, 366 (1981).Google Scholar
12. Morrow, M.E., White, K.M., Erkhardt, C.J., and Sandman, D.J., Chem. Phys. Lett., 140, 263 (1987).Google Scholar
13. Eckhardt, H., Eckhardt, C.J., and Yee, K.C., J. Chem. Phys. 70, 5498 (1979).Google Scholar
14. Sandman, D.J., Mislow, K., Giddings, W.P., Dirlam, J., and Hanson, G.C., J. Am. Chem. Soc. 90, 4877 (1968).Google Scholar
15. Sandman, D.J. and Mislow, K., J. Am. Chem. Soc., 91, 645 (1969).CrossRefGoogle Scholar
16. Moscowitz, A., Proc. Roy. Soc., Ser. A, 297, 16, 40 (1967).Google Scholar
17. Sandman, D.J. and Ceasar, G.P., Israel J. Chem., 27, 293 (1986).Google Scholar
18. Morishima, I., Yoshikawa, K., Yonezawa, T., and Matsumoto, H., Chem. Phys. Lett., 16, 336 (1972).CrossRefGoogle Scholar
19. Sümmermann, W. and Deffner, U., Tetrahedron, 31, 593 (1975).Google Scholar
20. Korshak, Y.V., Ovchinnikov, A.A., Shapiro, A.M., Medvedeva, T.V., and Spektor, V.N., JETP Lett., 43, 399 (1986).Google Scholar
21. Korshak, Y.V., Medvedeva, T.V., Ovchinnikov, A.A., and Spektor, V.N., Nature, 326, 370 (1987).CrossRefGoogle Scholar
22. Sandman, D.J., Elman, B.S., Hamill, G.P., Velazquez, C.S., and Samuelson, L.A., Mol. Cryst. Liq. Cryst., 134, 89 (1986).CrossRefGoogle Scholar
23. Ovchinnikov, A.A. and Spektor, V.N., Synthetic Metals, 27, B615 (1988).Google Scholar
24. Cao, Y., Wang, P., Hu, Z., Li, S., Zhang, L., and Zhao, J., Solid State Commun., 68, 817 (1988).CrossRefGoogle Scholar
25. Cao, Y., Wang, P., Hu, Z., Li, S., Zhang, L., and Zhao, J., Synthetic Metals, 27, B625 (1988).Google Scholar
26. Miller, J.S., Glatzhofer, D.T., Calabrese, J.C., and Epstein, A.J., J. Chem. Soc, Chem. Commun., 322 (1988).Google Scholar
27. Rozantsev, E.G. and Sholle, V.D., Synthesis, 401 (1971).Google Scholar
28. Solans, X., Gali, S., Miravitelles, C., and Font-Altaba, M., Acta Crystallogr., B34, 2331 (1978).CrossRefGoogle Scholar
29. Cygler, M., Acta Crystallogr., B35, 195 (1979).Google Scholar
30. Shibaeva, R.P. and Rozenberg, L.P., J. Struct. Chem., 15, 845 (1974).Google Scholar
31. Arutyunyan, L.D. and Shibaeva, R.P., Dokl. Akad. Navk SSSR, 215, 881 (1974).Google Scholar
32. Barone, V., Cristinziano, P.L., Lelj, F., and Pastore, A., J. Molecular Structure, 90, 59 (1982).Google Scholar
33. Rozantsev, E.G., Theoretical and Experimental Chem., 2, 316 (1966).Google Scholar
34. Hay, A.S., J. Org. Chem., 27, 3320 (1962).Google Scholar
35. Lutz, W.B., Lazarus, S., and Meltzer, R.I., J. Org. Chem., 27, 1695 (1962).Google Scholar
36. Hamill, G.P., Yost, E.A., and Sandman, DJ., to be published.Google Scholar
37. Sandman, D.J., J. Crystal Growth, 89, 111 (1988).Google Scholar
38. Pavlikov, V.V., Muravev, V.V., Shapiro, A.B., Taits, S.Z., and Rozantsev, E.G., Izv. Akud. Navk SSSR, Ser. Khim., 1200 (1980).Google Scholar