Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T04:11:56.775Z Has data issue: false hasContentIssue false

Optical and Electrical Modeling of Polymer Thin-film Photovoltaics

Published online by Cambridge University Press:  01 February 2011

Wenjun Jiang
Affiliation:
[email protected], University of Washington, Physics, Seattle, Washington, United States
Scott T Dunham
Affiliation:
[email protected], University of Washington, Electrical Engineering, Seattle, Washington, United States
Get access

Abstract

By coupling optical and electronic device simulation, we explore the optimization of organic photovoltaic devices. We use optical simulation via FDTD and transmission matrix solution of Maxwell's equations in order to calculate distribution of light intensity, including the reflectivity and transmissivity of transparent anode layers. We derive simple formulas for the conductivity requirements as function of pattern structure of potential replacements for ITO as transparent anode material, and explore the optimization of thickness of active layer and its relationship with the peaks of optical generation inside the active layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Padinger, F., Rittberger, R. S., and Sariciftci, N. S., Adv. Funct. Mater. 13, 85 (2003).Google Scholar
2 Ma, W., Yang, C., Gong, X., Lee, K., and Heeger, A. J., Adv. Funct. Mater. 15, 1617 (2006).Google Scholar
3 Kroon, R., Lenes, M., Hummelen, J. C., Blom, P. W. M., and Boer, B., Polym. Rev. 48, 531582 (2008).Google Scholar
4 Li, G., Shrothiya, V., Huang, J. S., Yao, Y., Moriarty, T., Emery, K., and Yang, Y., Nature Mater. 4, 864868 (2005).Google Scholar
5 Zhang, D., Ryu, K. M., Liu, X. L., Polikarpov, E., Ly, J., Tompson, M. E., and Zhou, C. W., Nano. Lett. 6, 18801886 (2006).Google Scholar
6 Chen, H. Y., Hou, J. H., Zhang, S. Q., Liang, Y. Y., Yang, G. W., Yang, Y., Yu, L. P., Wu, Y., and Li, G., Nature Photon. 3, 649653 (2009).Google Scholar
7 Born, M., and Wolf, E., “An absorbing film on a transparent substrate,” Principles of Optics Optics, 7th edition, (Cambridge University Press) pp. 222333.Google Scholar
8 Logeeswaran, V. J., Nobuhiko, P. K., Kobayashi, P., Saiflslam, M., Wu, W., Chaturvedi, P., Fang, N. X., Wang, S. Y., and Williams, R. S., Nano Lett. Lett., 9, 178182 (2009).Google Scholar
9 Koster, L. J. A., Mihailetchi, V. D., and Blom, P. W. M, Appl. Phys. Lett. 88, 093511 (2006).Google Scholar
10 Hoppe, H., and Sariciftci, N. S., J. Mater. Chem. 16, 4561 (2006).Google Scholar
11 Scully, S. R., Armstrong, P. B., Edder, C., Frechet, J. J. J., and McGehee, M. D., Adv. Mater. 19, 29612966 (2009).Google Scholar
12 Piris, J., Dykstra, T. E., Bakulin, A. A., Loosdrecht, P. H. M., Knulst, W., Trinh, M. T., Schins, J. M., and Siebbeles, L. D. A., J. Phys. Chem. C. 113, 1450014506 (2009).Google Scholar
13 Yee, K., IEEE T. Antenn. Propag. 14, 302307 (1966).Google Scholar
14 Berenger, J., J. Comput. Phys. 114, 185200 (1994).Google Scholar
15 Roden, J. A., and Gedney, S. D., Microw. Opt. Techn. Let. 27, 334339 (2000).Google Scholar