Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-28T07:05:12.578Z Has data issue: false hasContentIssue false

Optical and Electrical Effect of Texture Morphology on the Performance of Thin-Film Solar Cells

Published online by Cambridge University Press:  07 June 2012

Daiji Kanematsu
Affiliation:
Next-Generation Energy Device Development Center, Panasonic Corporation, 180, Ohmori, Anpachi-Cho, Anpachi-Gun, Gifu 503-0195, Japan
Mitsuhiro Matsumoto
Affiliation:
Next-Generation Energy Device Development Center, Panasonic Corporation, 180, Ohmori, Anpachi-Cho, Anpachi-Gun, Gifu 503-0195, Japan
Shigeo Yata
Affiliation:
Next-Generation Energy Device Development Center, Panasonic Corporation, 180, Ohmori, Anpachi-Cho, Anpachi-Gun, Gifu 503-0195, Japan
Yoichiro Aya
Affiliation:
Next-Generation Energy Device Development Center, Panasonic Corporation, 180, Ohmori, Anpachi-Cho, Anpachi-Gun, Gifu 503-0195, Japan
Akira Terakawa
Affiliation:
Next-Generation Energy Device Development Center, Panasonic Corporation, 180, Ohmori, Anpachi-Cho, Anpachi-Gun, Gifu 503-0195, Japan
Masahiro Iseki
Affiliation:
Next-Generation Energy Device Development Center, Panasonic Corporation, 180, Ohmori, Anpachi-Cho, Anpachi-Gun, Gifu 503-0195, Japan
Get access

Abstract

We correlated the texture morphology and the solar cell properties by measuring the distribution in the texture morphology. As a result, the short-circuit current ISC was approximated across various types of substrates by the standard texture height. Furthermore, we investigated the texture morphology from the point of view of the electrical effects. With regard to this point, the open-circuit voltage VOC was correlated to the steepest texture angle. Therefore, we consider that the both of the ISC and the VOC can be improved by controlling the distribution in the texture morphology.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Terakawa, A., Hishida, M., Yata, S., Shinohara, W., Kitahara, A., Yoneda, Haruki, Aya, Y., Yoshida, , Iseki, M. and Tanaka, M., Proc. 26th EUPVSEC (Hamburg, 2011) p.2362 Google Scholar
Yata, S., Kanematsu, D., Kaneko, K., Shimizu, R., Kitahara, A., Hishida, M., Aya, Y., Shinohara, W., Yoneda, H., Terakawa, A., Iseki, M. and Tanaka, M., Technical Digest 21st PVSEC (Fukuoka, 2011) 2A-2O-01.Google Scholar
Matsumoto, M., Aya, Y., Hishida, M., Yata, S., Shinohara, W., Yoshida, I., Kanematsu, D., Terakawa, A., Iseki, M. and Tanaka, M., Proc. 2012 MRS Spring Meeting, (2012) in preparation.Google Scholar
Nasuno, Y., Kondo, M. and Matsuda, A., Jpn. J. Appl. Phys. 40 (2001) p.303 CrossRefGoogle Scholar
Hiza, S., Hayashi, T., Yamada, A. and Konagai, M., 17th PVSEC (Fukuoka, 2007) 6P-P5–71 Google Scholar
Kanematsu, D., Yata, S., Kitahara, A., Terakawa, A. and Iseki, M., 71st Japan Soc. of Applied Physics Autumn Meeting (Toyama, 2010) 14a-ZB-2 Google Scholar
Kanematsu, D., Yata, S., Kitahara, A. Terakawa, A. and Iseki, M., 58th Japan Soc. of Applied Physics Spring Meeting (Kanagawa, 2011) 18p-B10-3 Google Scholar