Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-30T23:57:56.936Z Has data issue: false hasContentIssue false

Optical and Electrical Characterization of Annealed Silicon-implanted GaN

Published online by Cambridge University Press:  01 February 2011

H. T. Wang
Affiliation:
Centre for Optoelectronics, Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576
L.S. Tan
Affiliation:
Centre for Optoelectronics, Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576
E. F. Chor
Affiliation:
Centre for Optoelectronics, Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576
Get access

Abstract

In this paper, we investigate the effect of post-implant annealing on the optical and electrical properties of Si-implanted GaN films. Results from several measurement techniques including room temperature photoluminescence (PL), micro-Raman scattering, high resolution X-ray diffraction (HRXRD) and Hall measurement are correlated to study the behavior of damage removal, dopant activation, crystalline quality and residual stress, etc. The Hall measurement demonstrates that reasonable activation percentage is achieved though there is only partial recovery of the PL intensity. Raman scattering shows the decrease of stress within the implanted films after thermal annealing. The carrier concentration increases monotonically with increasing annealing temperature up to 1100°C, which is in agreement with linewidth broadening of near band edge in PL spectrum. Moreover, systematic measurements implies that the implantation induced defects, especially point defects, which could play significant role in either the optical or electrical properties of films, cannot be completely annealed out at 1100°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H., Sugimoto, Y., and Chocho, K., Appl. Phys. Lett. 72, 211 (1998).Google Scholar
2. Eiting, C.J., Grudowski, P.A., Dupuis, R.D., Hsai, H., Tang, Z., Becher, D., Kuo, H., Stillman, G.E., Feng, M., Appl. Phys. Lett. 73, 3875 (1998).Google Scholar
3. Zolper, J.C., Tan, H.H., Williams, J.S., Zou, J., Cockayne, D.J.H., Pearton, S.J. and Karlicek, R.F., Appl. Phys. Lett. 70, 2729 (1997).Google Scholar
4. Zopler, J.C., Rieger, D.J., Baca, A.G., Pearton, S.J., Lee, J.W. and Stall, R.A. Appl. Phys. Lett 69, 538 (1996).Google Scholar
5. Ziegler, J.F., SRIM Instruction Manual, http://www.SRIM.org (2002).Google Scholar
6. Pearton, S.J., Vartuli, C.B., Zolper, J.C, Yuan, C., and Stall, R.A., Appl. Phys. Lett. 67, 1435 (1995).Google Scholar
7. Schubert, E.F., Geopfert, I.D., Grieshaber, W. and Redwing, J.M., Appl. Phys. Lett. 71 921 (1997).Google Scholar
8. Yoshikawa, M., Kunzer, M., Obloh, H., Schlotter, P., Schmidt, R., Herres, N. and Kaufmann, U., J. Appl. Phys. 86, 4400 (1999).Google Scholar
9. Müller, M., Bahr, D. and Press, W., J. Appl. Phys. 74, 1590 (1993).Google Scholar
10. Heying, B., Wu, X.H., Keller, S., Li, Y., Kapolnek, D., Keller, B.P., Denbaars, S.P. and Speck, J.S., Appl. Phys. Lett. 68 (1996).Google Scholar
11. Lester, S.D., Ponce, F.A.. Craford, M.G. and Steigerwald, D.A., Appl. Phys. Lett. 66, 1249 (1995).Google Scholar
12. Tripathy, S., Chua, S.J., Ramam, A., Sia, E.K., Pan, J.S., Lim, R., Yu, G. and Shen, Z.X., J. Appl. Phys. 91, 3398 (2002).Google Scholar
13. Limmer, W., Ritter, W., Sauer, R., Mensching, B., Liu, C. and Rauschenbach, B., Appl. Phys. Lett. 72, 2589 (1998).Google Scholar
14. Miwa, K. and Fukumoto, A., Phys. Rev. B 48, 7897 (1993).Google Scholar
15. Gorczyca, I., Christensen, N.E. and Rodriguez, C.O., , Miwa, Phys. Rev. B 51, 11 936 (1995).Google Scholar
16. Siegle, H., Kaczmarczyk, G., Filippidis, L., Litvinchuk, A.P., Hoffmann, A. and Thomsen, C., Phys. Rev. B 55, 7000 (1997).Google Scholar
17. Li, G.H., Zhang, W., Han, H.X., Wang, Z.P., Duan, S.K., Appl. Phys. Lett. 86, 2051 (1999).Google Scholar