Published online by Cambridge University Press: 26 February 2011
We demonstrate the operation of a high-speed optically addressed spatial light modulator utilizing a hydrogenated amorphous silicon photosensor and a ferroelectric liquid crystal modulator. The device has numerous optical parallel processing and interconnect applications. It combines desirable resolution, switching speed, size, and contrast characteristics. The devices are driven by a square-wave voltage, such that read and write operations take place under reverse bias, and an erase operation occurs under forward bias. The capacitance associated with the photosensor plays a critical role in the device performance.