Published online by Cambridge University Press: 15 February 2011
In this paper we have studied the photoemission from quantum wells (QW), quantum wells wires (QWWs) and quantum dots (QDs) of quantum confined strained III–V compounds on the basis of a newly formulated electron dispersion law. It is found taking such quantum confined Hg1–xCdxTe and In1–xGaxAsyP1–y lattice matched InP as examples that the photoemission increases with increasing energy of the incident photons in a ladder like manner and also exhibits oscillatory dependences with changing electron concentration and film thickness respectively for all types quantum confinement. The photoemitted current is greatest in strained QDs and least in unstrained QWs. In addition the theoretical results are in agreement with the experimental datas as given elsewhere.