Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-28T16:01:48.574Z Has data issue: false hasContentIssue false

On the Effects of Interstitial Elements on Microstructure and Properties of Ternary and Quaternary TiAl based alloys

Published online by Cambridge University Press:  26 February 2011

Jean-Pierre Chevalier
Affiliation:
Centre d'Etudes de Chimie Métallurgique, Centre National de la Recherche Scientifique, 15, rue Georges Urbain, F 94407 Vitry cedex also at Chaire des Matériaux Industriels Métalliques et Céramiques, Conservatoire National des Arts et Métiers, 2, rue Conté F 75003, Paris
Mélanie Lamirand
Affiliation:
Centre d'Etudes de Chimie Métallurgique, Centre National de la Recherche Scientifique, 15, rue Georges Urbain, F 94407 Vitry cedex
Jean-Louis Bonnentien
Affiliation:
Centre d'Etudes de Chimie Métallurgique, Centre National de la Recherche Scientifique, 15, rue Georges Urbain, F 94407 Vitry cedex
Get access

Abstract

Ti-Al-Cr ternary and Ti-Al-Cr-Nb quaternary alloys have been studied as a function of initial purity and added interstitial content. Using strict clean processing together with either ultra high purity or commercial purity alloys, the effects of interstitial elements (essentially O, but also C and N) on microstructure and hardness, yield stress and fracture strain have been studied for both fully lamellar microstructures and duplex microstructures. The results are clear and similar trends are observed : as long as they do not precipitate, these stabilise the lamellar microstructure and affect the kinetics of the α-γ phase tranformation, leading to a higher than equilibrium value for the α2 phase for continuous cooling. Both the lamellar spacing and the α2 phase fraction correlate with increased hardness and yield stress, and also with decreasing fracture strain. The effects are significant.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ouchi, C., Iizumi, H. and Mitao, S., Mater. Sci. Eng. A, A243, 186 (1998).Google Scholar
2. Saunders, N., Gamma Titanium Aluminides 1999, ed. Kim, Y.W., Dimiduk, D.M. and Loretto, M.H. (TMS, Warrendale, 1999), pp 183188.Google Scholar
3. Larsen, D.E., United State Patent n° 5,685,924 (Nov. 11, 1997).Google Scholar
4. Perdrix, F., PhD Thesis, Université Paris XI, Orsay (2000).Google Scholar
5. Lamirand, M., PhD Thesis, Université Paris XII, Créteil (2004).Google Scholar
6. Bigot, J., C.R. Acad. Sc. Paris, 279, 6 (1974).Google Scholar
7. Perdrix, F., Cornet, M., Bigot, J. and Chevalier, J-P., Microstructure Design for improved Mechanical Behaviour of Advanced Materials, ed. Petit, J., Takahashi, H., Blavette, D., Igata, N. and Dimitrov, O. (J. de Physique IV, Proceeding, Les Ulis, 2000) pp 1520.Google Scholar
8. Perdrix, F., Trichet, M-F., Bonnentien, J-L., Cornet, M. and Bigot, J., Intermetallics, 9, 147 (2001).Google Scholar
9. Perdrix, F., Trichet, M-F., Bonnentien, J-L., Cornet, M. and Bigot, J., Intermetallics, 9, 807 (2001).Google Scholar
10. Cho, H.S., Nam, S.W., Yun, J.H. and Lee, D.M., Mater. Sci. Eng. A, A262, 129 (1999).Google Scholar
11. Menand, A., Huguet, A., and Nerac-Partaix, A., Acta mater., 12, 4729 (1996).Google Scholar
12. Menand, A., Zapolsky-Tatarenko, H. and Nerac-Partaix, A., Mat. Sci. Eng. A, A250, 55 (1998).Google Scholar