Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T19:01:57.820Z Has data issue: false hasContentIssue false

Observation of a new phase on the hydrogen terminated diamond (111)-surface by helium atom scattering

Published online by Cambridge University Press:  10 February 2011

G. Lange†
Affiliation:
Max-Planck-Institut für Strömungsforschung, Bunsenstr. 10, 37073 Göttingen, Germany
Th. Schaich
Affiliation:
Angewandte Physikalische Chemie, Universität Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
J. P. Toennies†
Affiliation:
Max-Planck-Institut für Strömungsforschung, Bunsenstr. 10, 37073 Göttingen, Germany
Ch. Wöll
Affiliation:
Max-Planck-Institut für Strömungsforschung, Bunsenstr. 10, 37073 Göttingen, Germany
Get access

Abstract

The structural phase diagram of the hydrogen terminated diamond-(111) surface, which is of considerable relevance with regard to the low-pressure synthesis of diamond, has been investigated by the highly surface sensitive technique of thermal energy helium atom scattering. A new phase with a (2 × 1) symmetry has been observed to occur upon heating above 940 K, significantly below the well known transition to the hydrogen-free (2 × 1) π-bonded chain structure at 1250 K. It is proposed that the new phase consists of a hydrogen (2 × 1) overlayer on an unreconstructed (1 × 1) diamond substrate. Structural models for this new phase will be presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Hamza, A. V., Kubiak, G. D., and Stulen, R. H., Surf. Sci. 206, L833 (1988)Google Scholar
[2] Waclawski, B. J., Pierce, D. T., Swanson, N., and Celotta, R. J., J. Vac. Sci. Technol. 21, 368 (1982)Google Scholar
[3] Lee, S.-T. and Apai, G., Phys. Rev. B 48, 2684 (1993)Google Scholar
[4] Aizawa, T., Ando, T., Kamo, M., and Sato, Y., Phys. Rev. B 48, 18348 (1993)Google Scholar
[5] Aizawa, T., Ando, T., Yamamoto, K., Kamo, M., and Sato, Y., Diamond Relat. Mater. 4, 600 (1995)Google Scholar
[6] Chin, R. P., Huang, J. Y., Shen, Y. R., Chuang, T. J., Seki, H., and Buck, M., Phys. Rev. B 45, 1522 (1992)Google Scholar
[7] Chin, R. P., Huang, J. Y., Shen, Y. R., Chuang, T. J., and Seki, H., Phys. Rev. B 52, 5985 (1995)Google Scholar
[8] Mitsuda, Y., Yamada, T., Chuang, T. J., Seki, H., Chin, R. P., Huang, J. Y., and Shen, Y. R., Surf. Sci. Lett. 257, L633 (1991)Google Scholar
[9] Matsumoto, S., Sato, Y., and Setaka, N., Carbon 19, 232 (1981)Google Scholar
[10] Vidali, G., Cole, M. W., Weinberg, W. H., and Steele, W. A., Phys. Rev. Lett. 51, 118 (1983)Google Scholar
[11] Vidali, G. and Frankl, D. R., Phys. Rev. B 27, 2480 (1983)Google Scholar
[12] Mehandru, S. P. and Anderson, A. B., J. Mater. Res. 5, 2286 (1990)Google Scholar
[13] Zheng, X. M. and Smith, P. V., Surf. Sci. 261, 395 (1992)Google Scholar
[14] Rieder, K.-H. and Engel, T., Phys. Rev. Lett. 45, 824 (1980), K.-H. Rieder, Phys. Rev. B 27, 7799 (1983)Google Scholar
[15] DRUKKER INTERNATIONAL, Beversestraat 20, 5431 SH Cuijk, The NetherlandsGoogle Scholar
[16] Toennies, J. P. and Vollmer, R., Phys. Rev. B 44, 9833 (1991)Google Scholar
[17] Brusdeylins, G., Doak, R. B., and Toennies, J. P., Phys. Rev. B 27, 3662 (1983)Google Scholar