Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-08T00:22:51.067Z Has data issue: false hasContentIssue false

Nucleation and Growth Processes During The Chemical Vapor Deposition of Diamond

Published online by Cambridge University Press:  22 February 2011

John C. Angus
Affiliation:
Chemical Engineering Department, Case Western Reserve University, Cleveland, OH 44106
Edward A. Evans
Affiliation:
Chemical Engineering Department, Case Western Reserve University, Cleveland, OH 44106
Get access

Abstract

The nucleation of independent diamond crystals can occur through graphitic, sp2, intermediates. Evidence from several sources indicates that diamond growth may take place through sp2 surface layers. Steady state analysis of simple reaction networks leads to expressions for the diamond growth rates, the concentration of sp2 impurities in the diamond, and for the nucleation rate of new crystals.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Angus, J.C., Li, Z., Sunkara, M., Lee, C., Lambrecht, W.R.L. and Segall, B., in Diamond Materials, Dismukes, J.P. and Ravi, K.V., Eds., Proceedings Volume 93–17, Electrochemical Society, Pennington, NJ (1993), pp. 128137.Google Scholar
[2] Lambrecht, W.R.L., Lee, C.H., Segall, B., Angus, J.C., Li, Z. and Sunkara, M., Nature 364, 607 (1993).Google Scholar
[3] Mehandru, S., Anderson, A.B. and Angus, J.C., J. Phys. Chem. 96, 10978 (1992).Google Scholar
[4] Li, Z., Wang, L., Suzuki, T., Argoitia, A., Pirouz, P. and Angus, J.C., J. Appl. Phys. 73, 711 (1992).Google Scholar
[5] Kurihara, N., Hirabayashi, K., Suzuki, K., Ichihara, M. and Takeuchi, S., J. Appl. Phys. 69, 6360 (1991).Google Scholar
[6] Zhu, W., Randall, C.A., Badzian, A.R. and Messier, R., J. Vac. Sci. Tech. A7, 2315 (1989).Google Scholar
[7] Tamor, M.A. and Hass, K.C., J. Mater. Res. 5., 2273 (1990).Google Scholar
[8] Fallon, P.J. and Brown, L.M., Diamond and Related Mat. 2, 1004 (1993).Google Scholar
[9] Zhu, W., Randall, C.A., Badzian, A.R. and Messier, R., J. Vac. Sci. Tech. A7, 2315 (1989).Google Scholar
[10] Muller, D.A., Tzou, Y., Raj, R. and Silcox, J., Nature 366, 725 (1993).Google Scholar
[11] Belton, D.N. and Schmeig, S.J., Surface Science 233,131 (1990).Google Scholar
[12] Tschersich, K.G., Clausing, R.E. and Heatherly, L., Diamond and Related Mat. 2, 542 (1993)Google Scholar
[13] Angus, J.C., Argoitia, A., Gat, R., Li, Z., Sunkara, M., Wang, L. and Wang, Y., Phil. Trans. Roy. Soc. A 342, 195 (1992).Google Scholar
[14] Davidson, B.N. and Pickett, W., Phys. Rev. B49, (1994) in press.Google Scholar
[15] Olson, D.S., Kelly, M.A., Kapoor, S. and Hagstrom, S.B., J. Mater. Res. 9, (1994) in press.Google Scholar
[16] Wang, Y. and Angus, J.C., Proc. 3rd Symposium on Diamond Materials, Proc. Vol. 93–17, Electrochemical Society, Pennington, NJ (1993), pp. 249255.Google Scholar
[17] Wang, Y., Evans, E.A., Zeatoun, L. and Angus, J.C., Proc. Third IUMRS Int. Conf. on Adv. Materials, Wakatsuki, M. et al. , Eds., Nikkam Kogyo Shimbum, Ltd., Tokyo (1993).Google Scholar
[18] Goodwin, D.G., J. Appl. Phys. 74, 6888 (1993).Google Scholar
[19] Harris, S.J., Appl. Phys. Lett. 56, 2298 (1990).Google Scholar