Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-28T18:44:33.106Z Has data issue: false hasContentIssue false

Nucleation and growth of polymorphs of barbital on chemically modified surfaces in microfluidic channels

Published online by Cambridge University Press:  26 February 2011

John C. MacDonald
Affiliation:
[email protected], Worcester Polytechnic Institute, Department of Chemistry & Biochemistry, 100 Institute Rd., Worcester, MA, 01609-2280, United States, 508 831-5240, 508 831-5240
Kasim Biyikli
Affiliation:
[email protected], Worcester Polytechnic Institute, Department of Chemistry & Biochemistry, United States
Branko Zugic
Affiliation:
[email protected], Worcester Polytechnic Institute, Department of Chemistry & Biochemistry, United States
Garrett Ebersole
Affiliation:
[email protected], Worcester Polytechnic Institute, Department of Chemistry & Biochemistry, United States
Joshua Allor
Affiliation:
[email protected], Worcester Polytechnic Institute, Department of Chemistry & Biochemistry, United States
Get access

Abstract

Crystallization experiments have been carried out in microfluidic devices to screen for polymorphs by crystallization on a range of surfaces. These devices consist of PDMS (polydimethylsiloxane) patterned with microchannels and then bonded to self-assembled monolayers (SAMs) of organic molecules on gold substrates. Barbital was crystallized in microchannels over five different SAMs functionalized with polar and nonpolar organic groups. Growth of polymorphs was examined under thermodynamic conditions from solutions at room temperature and under kinetic conditions by rapid cooling. The results of these experiments and the influence of chemically modified surfaces in microchannels in controlling polymorphism are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Bernstein, J., Polymorphism in Molecular Crystals (Clarendon Press, Oxford, 2002).Google Scholar
2 Desiraju, G. R., Crystal Engineering: The Design of Organic Solids, Materials Science Monographs (Elsevier, New York, 1989).Google Scholar
3 Heywood, B. R., Mann, S., Adv. Mater. 16, 9 (1994).Google Scholar
4 Meldrum, F. C., Flath, J., Knoll, W., Langmuir 13, 2033 (1997).Google Scholar
5 Bandyopadhyay, K., Vijayamohanan, K., Langmuir 14, 6924 (1998).Google Scholar
6 Popovitz-Biro, R., Lahav, M., Leiserowitz, L., J. Am. Chem. Soc. 113, 8943 (1991).Google Scholar
7 Travaille, A. M., Kaptjin, L., Verwer, P., Hulsken, B., Elemans, J. A. A. W., Nolte, R. J. M., van Kempen, H., J. Am. Chem. Soc. 125, 11571 (2003).Google Scholar
8 Aizenberg, J., Black, A. J., Whitesides, G. M., J. Am. Chem. Soc. 121, 4500 (1999).Google Scholar
9 Kuther, J., Seshadri, R., Knoll, W., Tremel, W., J. Mater. Chem. 8, 641 (1998).Google Scholar
10 Banno, N., Nakanishi, T., Matsunaga, M., Asahi, T., Osaka, T., J. Am. Chem. Soc. 126, 428 (2004).Google Scholar
11 Briseno, A. L., Aizenberg, J., Han, Y.-J., Penkala, R. A., Moon, H., Lovinger, A. J., Kloc, C., Bao, Z., J. Am. Chem. Soc. 127 (2005).Google Scholar
12 Frostman, M. L., Bader, M. M., Ward, M. D., Langmuir 10, 576 (1994).Google Scholar
13 Kang, J. F., Zaccaro, J., Ulman, A., myerson, A., Langmuir 16, 3791 (2000).Google Scholar
14 Lee, A. Y., Ulman, A., Myerson, A. S., Langmuir 18, 5886 (2002).Google Scholar
15 Pham, T., Lai, D., Ji, D., Tuntiwechapikul, W., Friedman, J. M., Lee, T. R., Coll. Surf. B: Biointerfaces 34, 191 (2004).Google Scholar
16 Ji, D., Arnold, C. M., Graupe, M., Beadle, E., Dunn, R. V., Phan, M. N., Villazana, R. J., Benson, R., Colorado, R. Jr, Lee, T. R., Friedman, J. M., J. Cryst. Growth 218, 390 (2000).Google Scholar
17 Hiremath, R., Varney, S. W., Swift, J. A., Chem. Commun., 2676 (2004).Google Scholar
18 Hiremath, R., Basile, J. A., Varney, S. W., Swift, J. A., J. Am. Chem. Soc. ASAP (2005).Google Scholar
19 Zheng, B., Roach, L. S., Ismagilov, R. F., J. Am. Chem. Soc. 125, 11170 (2003).Google Scholar
20 Chen, D. L., Gerdts, C. J., Ismagilov, R. F., J. Am. Chem. Soc. 127, 9672 (2005).Google Scholar
21 Ha, J.-M., Wolf, J. H., Hillmyer, M. A., Ward, M. D., J. Am. Chem. Soc. 126, 3382 (2004).Google Scholar
22 Hilden, J. L., Reyes, C. E., Kelm, M. J., Tan, J. S., Stowell, J. G., Morris, K. R., Cryst. Growth Des. 3, 921 (2003).Google Scholar
23 Chyall, L. J., Tower, J. M., Coates, D. A., Houston, T. L., Childs, S. L., Cryst. Growth Des. 2, 505 (2002).Google Scholar
24 Peterson, M. L., Morissette, S. L., McNulty, C., Goldsweig, A., Shaw, P., LeQuesne, M., Monagle, J., Encina, N., Marchionna, J., Johnson, A., Cima, M. J., Almarsson, O., J. Am. Chem. Soc. 124, 10858 (2002).Google Scholar
25 MacDonald, J. C., Whitesides, G. M., Chem. Rev. 94, 2383 (1994).Google Scholar
26 Craven, B. M., Vizzini, E. A., Acta Crstallogr. B 27, 1917 (1971).Google Scholar
27 Craven, B. M., Vizzini, E. A., Rodrigues, M. M., Acta Crstallogr. B 25, 1978 (1969).Google Scholar
28 Allen, F. H., Acta Crystallogr. B 58, 380 (2002).Google Scholar
29 Soto, E., MacDonald, J. C., Cooper, C. G., McGimpsey, W. G., J. Am. Chem. Soc. 125, 2838 (2003).Google Scholar
30 Cooper, C. G. F., MacDonald, J. C., Soto, E., McGimpsey, W. G., J. Am. Chem. Soc. 126, 1032 (2004).Google Scholar
31 Ward, M. D., Chem. Rev. 101, 1697 (2001).Google Scholar