Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T02:40:18.384Z Has data issue: false hasContentIssue false

Novel Nanocarbons: Global Topology and Curvature Perspectives

Published online by Cambridge University Press:  01 February 2011

Sanju Gupta
Affiliation:
[email protected], University of Missouri-Columbia, Electrical and Computer Engineering, 6th St. 303 EBW, Columbia, MO, 65211-2300, United States, 57388200948, 5738820397
A. Saxena
Affiliation:
LANL, Condensed Matter Theoretical Division, Los Alamos, NM, 87544, United States
Get access

Abstract

Carbon nanotubes (both the single- and multi-walled), in the family of nanostructured carbons, are of great interest because of several unsurpassable physical properties and it needs to be shown that they are physically stable and structurally unaltered when subjected to radiation. In addition to testing them for space applications, when exposed to high energy electron beam from transmission electron microscopy, the results seem quite promising in terms of nano-engineering/ nano-manufacturing for producing novel nanocarbons [1-3]. Experimental studies of effects of electron beam irradiation on carbon nanotubes show that multi-walled ones tend to be relatively more robust than their single-walled kins. The increased exposure on an individual bundle of single-wall nanotubes promoted graphitization, pinching, and cross-linking analogous to polymers forming an intra-molecular junction (IMJ) within the area of electron beam focus, possibly through aggregates of amorphous carbon [2,3]. Formation of novel nanostructures (nano-ring and helix-like) due to irradiation are observed. These studies shed light on the dynamics of nanomanufacturing and a regime of possible relevance of these materials for: (i) short-term space missions; (ii) radiation hard programmable logic circuits; and (iii) radiation pressure sensors. It is suggestive that a local reorganization occurs. Through resonance Raman spectroscopy and related techniques we also elucidate an important notion of global topology and curvature at nanoscale which points to an emergent paradigm of Curvature/Topology → Property → Functionality in these technologically important geometries of carbons: nanotubes, fullerenes, nanorings, nanocones, nanohorns and nanodisks. To this end, we have determined the variation in first order high frequency Raman band which indicates a strong electron-phonon coupling. These concepts also apply to nanostructures of other “topological materials” such as BN nanotubes and nanotori, helical gold nanotubes as well as Möbius conjugated polymers.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kroto, H. W., Heath, J. R., B'Brien, S. C., Curl, R. F., and Smalley, R. E., Nature 318, 162 (1985); W. Krätschmer, L. D. Lamb, K. Fostiropoulos, and D. R. Huffman, Nature 347, 354 (1990).Google Scholar
2. Curl, R. F. and Smalley, R. E., Sci. Amer. 265, 32 (1991).Google Scholar
3. Iijima, S., Nature 354, 56 (1991).Google Scholar
4. Sattler, K., Carbon 33, 915 (1995).Google Scholar
5. Charlier, J.-C. and Rignanese, G.-M., Phys. Rev. Lett. 86, 5970 (2001).Google Scholar
6. Krishnan, A., Dujardin, E., Treacy, M. M. J., Hugdahl, J., Lynum, S., and Ebbesen, T. W., Nature 388, 451 (1997); T. W. Ebbesen, Acc. Chem. Res. 31, 558 (1998).Google Scholar
7. Martel, R., Shea, H. R., and Avouris, P., Nature 398, 299 (1999).Google Scholar
8. Sano, M., Kamino, A., Okamura, J., and Shinkai, S., Science 293, 1299 (2001).Google Scholar
9. Oh, D.-H., Park, J. M., and Kim, K. S., Phys. Rev. B 62, 1600 (2000).Google Scholar
10. de Heer, W. A. and Ugarte, D., Chem. Phys. Lett. 207, 480 (1993).Google Scholar
11. Rubio, A., Corkill, J., and Cohen, M. L., Phys. Rev. B 49, 5081 (1994); X. Blase, A. Rubio, S. G. Louie, and M. L. Cohen, Europhys. Lett. 28, 335 (1994).Google Scholar
12. Chopra, N. G., Luyken, R. J., Cherrey, K., Crespi, V. H., Cohen, M. L., Louie, S. G., and Zettl, A., Science 269, 966 (1995); L. Loiseau, F. Willaime, N. Demoncy, G. Hug, and H. Pascard, Phys. Rev. Lett. 76, 4737 (1996).Google Scholar
13. Oshima, Y., Onga, A., and Takayanagi, K., Phys. Rev. Lett. 91, 205503 (2003).Google Scholar
14. Tanda, S. et. al., Nature 417, 397 (2002).Google Scholar
15. Ajami, D. et. al., Nature 426, 819 (2003).Google Scholar
16. Harigaya, K., J. Phys. Soc. Jpn. 74, 523 (2005). % cond-mat/0412309.Google Scholar
17. Hong, Y., Coombs, N., and Ozin, G. A., Nature 386, 692 (1997).Google Scholar
18. Hobbs, L. W., Jesurum, C. E.. Pulim, V., and Berger, B., Phil. Mag. A 78, 679 (1998).Google Scholar
19. Michalet, X. and Bensimon, D., Science 269, 666 (1995); X. Michalet, D. Bensimon, and B. Fourcade, Phys. Rev. Lett. 72, 168 (1994).Google Scholar
20. Karlsson, M., Sott, K., Davidson, M., Cans, A.-S., Linderholm, P., Chiu, D., and Orwar, O., Proc. Nat. Acad. Sci. 99, 11573 (2002).Google Scholar
21. Thinking Topologically about Photochemistry in Restricted Spaces, Turro, N. J. and Garcia-Garibay, M. in Chapt. 1, pp.1 of Photochemistry in Organized and Constrained Media, ed. Ramamurthy, V. (VCH Publishers, New York, 1991).Google Scholar
22. Nakahara, M., Geometry, Topology and Physics, Graduate Student Series in Physics (Adam Hilger, Bristol, 1990).Google Scholar
23. Harris, P. J. F., Vis, R. D., and Heymann, D., Earth Planet. Sci. Lett. 183, 355 (2000).Google Scholar
24. Heymann, D., Jenneskens, L. W., Jehlicka, J., Koper, C., and Vlietstra, E., Fullerenres Nanotubes Carbon Nanostr. 11, 333 (2003).Google Scholar
25. Dujardin, E., Thio, T., Lezec, H., and Ebbesen, T. W., Appl. Phys. Lett. 79, 2474 (2001).Google Scholar
26. Sinnott, S. B. and Andrews, R., Crit. Rev. Solid State Mater. Sci. 26, 145 (2001).Google Scholar
27. Senger, R. T., Dag, S., and Ciraci, S., cond-mat/0410363; Ono, T. and Hirose, K., cond-mat/0409721.Google Scholar
28. Ebbesen, T. W. and Takada, T., Carbon 33, 973 (1995).Google Scholar
29. Crespi, V. H., Phys. Rev. B 58, 12671 (1998).Google Scholar
30. Haluska, C. K., Gozdz, W. T., Döbereiner, H.-G., Förster, S., and Gompper, G., Phys. Rev. Lett. 89, 238302 (2002).Google Scholar
31. Hombacker, D. J., Kahng, S.-J., Misra, S., Smith, B. W., Johnson, A. T., Mele, E. J., Luzzi, D. E., and Yazdani, A., Science 295, 828 (2002).Google Scholar
32. Bandow, S., Hiraoka, T., Yumura, T., Hirahara, K., Shinohara, H., and Iijima, S., Chem. Phys. Lett. 384, 320 (2004).Google Scholar
33. Sasaki, K., Kawazoe, Y., and Saito, R., Phys. Lett. A 321, 369 (2004).Google Scholar
34. Bandaru, P. R., Daraio, C., Jin, S., and Rao, A. M., Nature Mater. 4, 663 (2005); H. Xu, Nature Mater. 4, 649 (2005).Google Scholar
35. Gill, P. R., Murray, W., and Wright, M. H., The Levenberg-Marquardt Method, Sec. 4.7.3 in Practical Optimization, (Academic Press, London, 1981), pp.136137.Google Scholar
36. Blase, X., Benedict, L. X., Shirley, E. L., and Louie, S. G., Phys. Rev. Lett. 72, 1878 (1994).Google Scholar
37. Rao, A. M., Richter, E., Bandow, S., Chase, B., Eklund, P. C., Williams, K. A., Fang, S., Subbaswamy, K. R., Menon, M., Thess, A., Smalley, R., Dresselhaus, G., and Dresselhaus, M. S., Science 275, 187 (1997).Google Scholar
38. Thomsen, C. and Reich, S., Phys. Rev. Lett. 85, 5214 (2000).Google Scholar
39. Fanti, M., Orlandi, G., and Zerbetto, F., J. Phys. B 29, 5065 (1996).Google Scholar
40. Fullerene and Fullerene Polymer Composites, edited by Eklund, P.C. and Rao, A. M. (Springer-Verlag, Berlin, 1999).Google Scholar
41. Wang, H., Chhowalla, M., Sano, N., Jia, S., and Amaratunga, G. A. J., Nanotechnology 15, 546 (2004)Google Scholar
42. Tan, P., Dimovski, S., and Gogotsi, Y., Phil. Trans. R. Soc. Lond. A 362, 2289 (2004).Google Scholar
43. Meunier, V., Lambin, Ph., and Lucas, A. A., Phys. Rev. B 57, 14886 (1998); S. Berber, Y.-K. Kwon, and D. Tomanek, Phys. Rev. B 62, R2291 (2000); J.-C. Charlier and G.-M. Rignanese, Phys. Rev. Lett. 86, 5970 (2001).Google Scholar
44. Pasqualini, E., Phys. Rev. B 56, 7751 (1997).Google Scholar
45. Hamada, N., Sawada, S., and Oshiyama, A., Phys. Rev. Lett. 68, 1579 (1992); R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 46, 1804 (1992).Google Scholar
46. Ferreira, M. S., Dargam, T. G., Muniz, R. B., and Latge, A., Phys. Rev. B 63, 245111 (2001).Google Scholar
47. Luk'yanchuk, I. A. and Kopelevich, Y., Phys. Rev. Lett. 93, 166402 (2004).Google Scholar
48. Tamura, R., Ikuta, M., Hirahara, T., and Tsukuda, M., cond-mat/0407749.Google Scholar
49. Tao, R. and Haldane, F. D. M., Phys. Rev. B 33, 3844 (1986); X. G. Wen and Q. Niu, Phys. Rev. B 41, 9377(1990).Google Scholar
50. Makarova, T. L., Sundqvist, B., Höhne, R., Esquinazi, P., Kopelevich, Y., Scharff, P., Davydov, V. A., Kashevarova, L. S., and Rakhmanina, A. V., Nature 413, 716 (2001); ibid. Nature 436, 1200 (2005).Google Scholar