Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T04:42:09.005Z Has data issue: false hasContentIssue false

A novel industrial thin film deposition technology for sustainable CdTe photovoltaics

Published online by Cambridge University Press:  29 August 2012

P. Nozar*
Affiliation:
ISMN-CNR, via Gobetti, 101, 40129 Bologna, Italy,
G. Mittica
Affiliation:
Siena Solar Nanotech, S.p.A., Piazza dell’Abbadia, 4, 53100 Siena, Italy,
S. Milita
Affiliation:
IMM-CNR, via Gobetti, 101, 40129 Bologna, Italy,
C. Albonetti
Affiliation:
ISMN-CNR, via Gobetti, 101, 40129 Bologna, Italy,
F. Corticelli
Affiliation:
IMM-CNR, via Gobetti, 101, 40129 Bologna, Italy,
A. Brillante
Affiliation:
Dip. di Chim. Fis. e Inorg., Univ. di Bologna, Viale del Risorgimento, 4, 40136 Bologna, Italy
I. Bilotti
Affiliation:
Dip. di Chim. Fis. e Inorg., Univ. di Bologna, Viale del Risorgimento, 4, 40136 Bologna, Italy
G. Tedeschi
Affiliation:
Siena Solar Nanotech, S.p.A., Piazza dell’Abbadia, 4, 53100 Siena, Italy,
C. Taliani
Affiliation:
Siena Solar Nanotech, S.p.A., Piazza dell’Abbadia, 4, 53100 Siena, Italy, Organic Spintronics, S.r.l., via Gobetti 52/2, 40129 Bologna, Italy, ISMN-CNR, via Gobetti, 101, 40129 Bologna, Italy,
Get access

Abstract

CdTe and CdS are emerging as the most promising materials for thin film photovoltaics in the quest of the achievement of grid parity. The major challenge for the advancement of grid parity is the achievement of high quality at the same time as low fabrication cost. The present paper reports the results of the new deposition technique, Pulsed Plasma Deposition (PPD), for the growth of the CdTe layers on CdS/ZnO/quartz and quartz substrates. The PPD method allows to deposit at low temperature. The optical band gap of deposited layers is 1.50 eV, in perfect accord with the value reported in the literature for the crystalline cubic phase of the CdTe.

The films are highly crystalline with a predominant cubic phase, a random orientation of the grains of the film and have an extremely low surface roughness of 4.6±0.7 nm r.m.s.. The low roughness, compared to traditional thermal deposition methods (close space sublimation and vapour transport) permits the reduction of the active absorber and n-type semiconductor layers resulting in a dramatic reduction of material usage and the relative deposition issues like safety, deposition rate and ultimately cost

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fritsche, J., Jaegermann, W., Luschitz, J., Späth, B., Haindl, G., Golusda, E., Klein, A., www.nrel.gov/pv/thin_film/docs/epsec_4cv1_9.pdf.Google Scholar
2. Jaegermann, W., Klein, A., Mayer, T., Adv. Mater. 21 (2009) 41964206.Google Scholar
3. Sanderson, R.J., Hewitt, K.C., Phys. C, 425 (2005) 5261.Google Scholar
4. Pulsed Laser Deposition of Thin Films-Wiley Interscience, New York, 1994.Google Scholar
5. Gleizer, S., Yarmolich, D., Felsteiner, J., Ya. Krasik, E., Nozar, P., and Taliani, C., J. Appl. Phys. 106 (2009) 073301.Google Scholar
6. Krasik, Ya. E., Gleizer, S., Chirko, K., Gleizer, J. Z., Felsteiner, J., Bernshtam, V., and Matacotta, F. C., J. Appl. Phys. 99 (2006) 063303.Google Scholar
7. Krasik, Ya. E., Gleizer, S., Nozar, P. and Taliani, C., Plasma Dev. Oper., 15 (2007) 107114.Google Scholar
8. Yarmolich, D., Nozar, P., Taliani, C., Gleizer, S., Krasik, Y., in:, Bull. Am. Phys. Soc. GEC/ICRP, 55 (2010).Google Scholar
9. Krasik, Ya. E., Gleizer, S., Nozar, P. and Taliani, C., Plasma Dev. Oper., 15 (2007) 107114.Google Scholar
10. Brillante, A. et al. ., CrystEngComm. 10 (2008) 937946.Google Scholar
11. X-Ray Diffraction, B.E. Warren, Dover, 1990.Google Scholar
12. Ramiro, J. et al. , Thin Solid Films 361-362 (2000) 6569.Google Scholar
13. Seth, A. et al. , Sol. Energy Mater. Sol. Cells 59 (1999) 3549.Google Scholar
14. Chung, G. Y., Park, S. C., Cho, K., Ahn, B. T., J. Appl. Phys. 78 (1995) 54935498.Google Scholar
15. Souza Cruz, T.G., Kleinke, M.U., Gorenstein, A., Appl. Phys. Lett. 81 (2002) 4922.Google Scholar
16. Sanchez, F., Infante, I., Luders, U., Abad, L., Fontcuberta, J., Surf. Sci. 600 (2006) 1231.Google Scholar
17. Tobin, S.P. et al. ., J. Electron. Mater. 24 (1995) 697705.Google Scholar
18. Huerta-Ruelas, J. et al. , Jpn. J. Appl. Phys. 39 (2000) 17011705.Google Scholar
19. Huerta, J., Lopez, M., Zelaya, O., Superficies y Vacio 8 (1999) 125 Google Scholar
20. Dhere, R., Rose, D., Albin, D., Asher, S., Al-Jassim, M., Cheong, H., Swartzlander, A., Moutinho, H., Coutts, T., and Sheldon, P.; Presented at the 26th IEEE Photovoltaic Specialists Conference, September 29 – October 3, 1997, Anaheim, California Google Scholar