Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T11:13:56.784Z Has data issue: false hasContentIssue false

A Novel Direct Pulse Laser Deposited Nickel Silicide Ohmic Contact to n-SiC

Published online by Cambridge University Press:  21 March 2011

M. W. Cole
Affiliation:
US Army Research Laboratory, Weapons and Materials Research Directorate Aberdeen Proving Ground, MD 21005, U.S.A.
P. C. Joshi
Affiliation:
US Army Research Laboratory, Weapons and Materials Research Directorate Aberdeen Proving Ground, MD 21005, U.S.A.
C. W. Hubbard
Affiliation:
US Army Research Laboratory, Weapons and Materials Research Directorate Aberdeen Proving Ground, MD 21005, U.S.A.
E. Ngo
Affiliation:
US Army Research Laboratory, Weapons and Materials Research Directorate Aberdeen Proving Ground, MD 21005, U.S.A.
J. D. Demaree
Affiliation:
US Army Research Laboratory, Weapons and Materials Research Directorate Aberdeen Proving Ground, MD 21005, U.S.A.
J. K. Hirvonen
Affiliation:
US Army Research Laboratory, Weapons and Materials Research Directorate Aberdeen Proving Ground, MD 21005, U.S.A.
M. C. Wood
Affiliation:
US Army Research Laboratory, Weapons and Materials Research Directorate Aberdeen Proving Ground, MD 21005, U.S.A.
M. H. Ervin
Affiliation:
US Army Research Laboratory, Weapons and Materials Research Directorate Aberdeen Proving Ground, MD 21005, U.S.A.
Get access

Abstract

Pulsed laser direct deposit Ni2Si Ohmic contacts were successfully fabricated on n-SiC. The electrical, structural, compositional, and surface morphological properties were investigated as a function of heat treatments ranging from 700 °C to 950 °C. The as-deposited and 700 °C annealed samples were non-Ohmic. Annealing at 950 C° yielded excellent Ohmic behavior, an abrupt void free interface, and a smooth surface morphology. No residual carbon was present within the contact film or at the film-SiC interface and the contact showed no appreciable contact expansion as a result of the 950 °C annealing process. Results of this investigation demonstrate that 950 °C annealed pulse laser deposited Ni2Si-SiC contacts possess excellent electrical, interfacial, microstructural, and surface properties, which are required for reliable device operation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Neudeck, Philip G., J. of Electronic Materials, 24, 283 (1995).Google Scholar
2. Pearton, S. J., Ren, F., Shul, R. J. and Zolper, J. C., Electrochemical Society Proc., 97–1, 138 (1997).Google Scholar
3. Melloch, M. R. and Cooper, J. A., MRS Bulletin, 23, 42 (1997).Google Scholar
4. Crofton, J., Porter, L. M. and Williams, J. R., Phys. Stat. Sol., 202, 581 (1997).Google Scholar
5. Porter, L. M. and Davis, R. F., Mat. Sci. and Eng., B 34, 83 (1995).Google Scholar
6. Cole, M. W., Hubbard, C.W., Demaree, D., Fountazoulas, C. G., Natarajan, A., Miller, R. A., Harris, D.. Xie, K. and Searson, P., Electrochemical Society Proc., 28, 71 (1998).Google Scholar
7. Adams, S., Severt, C., Lenord, J., Liu, S. and Smith, S. R., Trans. Second Intl. High Temperature Electronics Conference,(D.B., King and F.V., Thome, eds.), 2, 9 (1994).Google Scholar
8. Stekl, A. J., Su, J. N., Yih, P. H., Yuan, C. and Li, J. P., Amorphous and CrystallineSilicon Carbide V, (Spencer, M. G., Devaty, R. P., Edmond, J. A., Kahn, A., and Rahman, M. M. eds.) IOP Conf. Series, 137, 653 (1994).Google Scholar
9. Luckowski, E. D., Williams, J. R., Bozak, M. J., Issacs-Smith, T., Crofton, J., Mat. Res. Soc,. Proc., 423, 119 (1996).Google Scholar
10. Crofton, J., McMullin, P. G., Williams, J. R., Bozack, M. J., J. Appl. Phys., 77,1317 (1995).Google Scholar
11. Crofton, J., Beyer, L., Hogue, T., Siergiej, R. R., Mani, S., Cassidy, J. B., Oder, T. N., Williams, J. R, Luckowski, E. D., Issacs-Smith, T., R Iyer, V. and Mahney, S. E., Proc. of the Fourth High Temperature Electronics Conference, 4, 84, (1998).Google Scholar
12. Marinova, Ts., Kakanakova-Georgieva, A., Krastev, V., Kakanakov, R., Neshev, M., Kassamakova, L., Noblanc, O., Arnodo, C., Cassette, S., Brylinski, C., Pecz, B., Radnoczi, G. and Vincze, Gy., Materials Science and Engineering, B46, 223 (1997).Google Scholar
13. Goesmann, Fred, Schmid-Fetzer, Rainer, Materials Science and Engineering B46, 357 (1997).Google Scholar
14. Getto, R., Freytag, J., Kopnarski, M., Oechsner, H., Material Science and Engineering, B61–62, 270 (1999).Google Scholar
15. Kakanakova-Georgieva, A., Marinova, Ts., Noblanc, O., Arnodo, C., Cassette, S., Brylinski, C., Thin Solid Films, 343–344, 637 (1999).Google Scholar
16. Doolittle, L. R., Nucl. Instrum. Methods, B9, 344 (1985).Google Scholar
17. Bunshah, Rointan F., Handbook of Deposition Technologies for Films and Coatings, (Bunshah, Rointan F. editor), 167, Los Angeles, Noyes Publications (1994).Google Scholar
18. Rastegaeva, M. G., Andreev, A. N., Petrov, A. A., Babanin, A. I., A.Yagovkina, M. and Nikitina, I. P., Material Science and Engineering, B46, 254 (1997).Google Scholar
19. Pecz, B., Radnoczi, G., Cassette, S., Brylinski, C, Arnodo, C., Noblanc, O., Diamond and Related Materials, 6, 1428 (1997).Google Scholar