Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T04:30:43.996Z Has data issue: false hasContentIssue false

Novel Defects and Anisotropic Vacancy Diffusion on Reconstructed Surfaces

Published online by Cambridge University Press:  10 February 2011

O. Rodríguez De La Fuente
Affiliation:
Dpto. de Física de Materiales, Universidad Complutense, E-28040, Madrid, Spain
M. A. González
Affiliation:
Dpto. de Física de Materiales, Universidad Complutense, E-28040, Madrid, Spain
J. M. Rojo
Affiliation:
Dpto. de Física de Materiales, Universidad Complutense, E-28040, Madrid, Spain
Get access

Abstract

STM and molecular dynamics simulations are used to study Au(001) 5×25 reconstructed surfaces after Ar+ bombardment at 600 eV and ion doses from 0.05 to 1 ML+. Surface 2D dislocation dipoles, identified as such in a previous investigation, are shown to have dislocation properties and to be formed by anisotropic diffusion of surface vacancies along the ridges of the reconstructed topmost layer. A new vacancy diffusion mechanism involving intermediate states with de-localized vacancies is identified. Increasing ion fluences is shown to lead to the formation of vacancy islands that are nucleated at the dislocation dipoles.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hannon, J.B., Klünker, C., Giesen, M., Ibach, H., Bartelt, N.C., Hamilton, J.C., Phys. Rev. Lett. 79, 2506(1997).Google Scholar
2. Th. Michely, Besocke, K.H. and Comsa, G., Surf. Sci. Lett. 230, L135 (1990); C.A. Lang, C.F. Quate and J. Nogami, App. Phys. Lett. 59, 1696(1991); J.C. Girard, Y. Samson, S. Gauthier, S. Rousset and J. Klein, Surf. Sci. 302, 73(1994); M. Esser, K. Morgenstern, G. Rosenfeld and G. Comsa, Surf. Sci. 402, 341(1998).Google Scholar
3. González, M.A., Figuera, J. de la, Fuente, O. Rodríguez de la, Rojo, J.M., Surf. Sci. Lett. 429, 486(1999).Google Scholar
4. Ercolessi, F., Tosatti, E. and Parrinello, M., Phys. Rev. Lett. 57, 719(1986).Google Scholar
5. Nastasi, M., Mayer, J.W. and Hirvonen, J.K., in Ion-Solid Interactions (Cambridge University Press, Cambridge 1996), chapter 7.Google Scholar
6. Nomura, M. and Wang, X.Q., Phys. Rev. Lett. 81, 2739(1998).Google Scholar
7. Joós, B. and Duesbery, M.S., Phys. Rev. Lett. 70, 2754(1993).Google Scholar
8. Hirth, J.P. and Lothe, J., in Theory of Dislocations, 2nd Edition, (McGraw-Hill, New York 1972), p. 564.Google Scholar
9. Fiorentini, V., Methfessel, M. and Scheffler, M., Phys. Rev. Lett. 71, 1051(1993).Google Scholar
10. Ritter, M., Stindtmann, M., Farle, M. and Baberschke, K., Surf. Sci. 348, 243(1996).Google Scholar