Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T20:42:10.388Z Has data issue: false hasContentIssue false

A Nonzero Gap Two-dimensional Carbon Allotrope from Porous Graphene

Published online by Cambridge University Press:  17 April 2012

Gustavo Brunetto
Affiliation:
Instituto de Física “Gleb Wataghin”, Universidade Estadual de Campinas, Campinas, SP 13083-970, Brazil.
Bruno I. Santos
Affiliation:
Instituto de Física “Gleb Wataghin”, Universidade Estadual de Campinas, Campinas, SP 13083-970, Brazil.
Pedro A. S. Autreto
Affiliation:
Instituto de Física “Gleb Wataghin”, Universidade Estadual de Campinas, Campinas, SP 13083-970, Brazil.
Leonadro D. Machado
Affiliation:
Instituto de Física “Gleb Wataghin”, Universidade Estadual de Campinas, Campinas, SP 13083-970, Brazil.
Ricardo P. B. dos Santos
Affiliation:
Departamento de Física, IGCE, UNESP, Rio Claro, SP, 13506-900, Brazil.
Douglas S. Galvao
Affiliation:
Instituto de Física “Gleb Wataghin”, Universidade Estadual de Campinas, Campinas, SP 13083-970, Brazil.
Get access

Abstract

Graphene has been one of the hottest topics in materials science in the last years. Because of its special electronic properties graphene is considered one of the most promising materials for future electronics. However, in its pristine form graphene is a gapless semiconductor, which poses some limitations to its use in some transistor electronics. Many approaches have been tried to create, in a controlled way, a gap in graphene. These approaches have obtained limited successes. Recently, hydrogenated graphene-like structures, the so-called porous graphene, have been synthesized. In this work we show, based on ab initio quantum molecular dynamics calculations, that porous graphene dehydrogenation can lead to a spontaneous formation of a nonzero gap two-dimensional carbon allotrope, called biphenylene carbon (BC). Besides exhibiting an intrinsic nonzero gap value, BC also presents well delocalized frontier orbitals, suggestive of a structure with high electronic mobility. Possible synthetic routes to obtain BC from porous graphene are addressed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Peng, H., Chen, D., Huang, J., Chikkannanavar, S., Hanisch, J., Jain, M., Peterson, D., Doorn, S., Lu, Y., Zhu, Y., et al. ., Phys. Rev. Lett. 101, 145501 (2008).Google Scholar
2. Novoselov, , Geim, A., Morozov, S., Jiang, D., Zhang, Y., Dubonos, S., , I. Grigorieva, , and Firsov, A., Science 306, 666 (2004).Google Scholar
3. Flores, M., Autreto, P., Legoas, S., and Galvao, D., Nanotechnology 20, 465704 (2009).Google Scholar
4. Cheng, S., Zou, K., Okino, F., Gutierrez, H., Gupta, A., Shen, N., Eklund, P., Sofo, J., and Zhu, J., Phys. Rev. B 81, 205435 (2010).Google Scholar
5. Withers, F., Dubois, M., and Savchenko, A., Phys. Rev. B 82, 73403 (2010).Google Scholar
6. Stankovich, S., Dikin, D., Piner, R., Kohlhaas, K., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S., and Ruoff, R., Carbon 45, 1558 (2007).Google Scholar
7. Gilje, S., Han, S., Wang, M., Wang, K., and Kaner, R., Nano Lett. 7, 3394 (2007).Google Scholar
8. Gomez-Navarro, C., Weitz, R., Bittner, A., Scolari, M., Mews, A., Burghard, M., and Kern, K., Nano Lett. 7, 3499 (2007).Google Scholar
9. Ruoff, R., Nature Nanotechnology 3, 10 (2008).Google Scholar
10. Wu, X., Sprinkle, M., Li, X., Ming, F., Berger, C., and De Heer, W., Phys. Rev. Lett. 101, 26801 (2008).Google Scholar
11. Kaiser, A., Gómez-Navarro, C., Sundaram, R., Burghard, M., and Kern, K., Nano Lett. 9, 1787 (2009).Google Scholar
12. Sofo, J., Chaudhari, A., and Barber, G., Phys. Rev. B, 75, 153401, (2007).Google Scholar
13. Ryu, S., Han, M., Maultzsch, J., Heinz, T., Kim, P., Steigerwald, M., and Brus, L., Nano Lett. 8, 4597 (2008).Google Scholar
14. Elias, D., Nair, R., Mohiuddin, T., Morozov, S., Blake, P., Halsall, M., Ferrari, A., Boukhvalov, D., Katsnelson, M., Geim, A., et al. . , Science 323, 610 (2009).Google Scholar
15. Leenaerts, O., Peelaers, H., Hernandez-Nieves, A., Partoens, B. and Peeters, F., Arxiv preprint arXiv:1009.3847 (2010).Google Scholar
16. Blankenburg, S., Bieri, M., Fasel, R., Mullen, K., Pignedoli, C. A. and Passerone, D., Small 6, 2266 (2010).Google Scholar
17. Du, A. J., Zhu, Z. H., and Smith, S. C., J. Am. Chem. Soc. 132, 2876 (2010).Google Scholar
18. Jiang, D. E., Cooper, V. R., and Dai, S., Nano Lett. 9, 4019 (2009).Google Scholar
19. Li, Y. F., Zhou, Z., Shen, P. W., and Chen, Z. F., Chem. Comm. 46, 3672 (2010).Google Scholar
20. Baughman, R., Eckhardt, H., and Kertesz, M., J. Chem. Phys. 87, 6687 (1987).Google Scholar
21. Baughman, R. H., Galvao, D. S., Cui, C., Wang, Y. and Tománek, D., Chem. Phys. Lett. 204, 8, (1993).Google Scholar
22. Enyashin, A. and Ivanovskii, A., Phys. St. Solid (b) 248, 1879 (2011).Google Scholar
23. Schulman, J. M. and Disch, R. L., J. Phys Chem. A 111, 10010 (2007).Google Scholar
24. Treier, M., Pignedoli, C., Laino, T., Rieger, R., Mullen, K., Passerone, D., and Fasel, R., Nature Chem. 3 61 (2010).Google Scholar
25. Otero, G., Biddau, G., Sanchez-Sanchez, C., Caillard, R., Lopez, M. F., Rogero, C., Palomares, F. J., Cabello, N., Basanta, M. A., Ortega, J., Mendez, J., Echavarren, A. M., Perez, R., Gomez-Lor, B., and Martin-Gago, J. A., Nature 454, 865 (2008).Google Scholar
26. Hatanaka, M., Chem. Phys. Lett. 488, 187 (2010).Google Scholar
27. Bieri, M., Treier, M., Cai, J., A it Mansour, K., Ruffieux, P., Groning, O., Groning, P., Kastler, M., Rieger, R., Feng, X., et al. ., Chem. Commun. 45, 6919 (2009).Google Scholar
28. Schrier, J., J. Phys. Chem. Lett. 1, 2284 (2010).Google Scholar
29. Delley, B., J. Chem. Phys. 88, 2547 (1988).Google Scholar
30. Delley, B., J. Chem. Phys. 113, 7756 (2000), DMol3 is available from Accelrys, Inc., as part of Materials Studio and the Cerius2 program suites http://www.accelrys.com.Google Scholar
31. Porezag, D., Frauenheim, T., Ohler, T. K, Seifert, G., and Kaschner, R., Phys. Rev. B 51, 12947 (1995).Google Scholar
32. Aradi, B., Hourahine, B., and Frauenheim, T., J. Phys. Chem. A 111, 5678 (2007).Google Scholar
33. Gutzleretal, R.., Chem. Commun. 4456 (2009).Google Scholar