Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-28T01:46:04.606Z Has data issue: false hasContentIssue false

Nonlinear Transient Finite Element Analysis of the Relaxation Mechanisms in Strained Silicon Grown on SiGe Virtual Substrate

Published online by Cambridge University Press:  01 February 2011

F. Sahtout Karoui
Affiliation:
: Materials Science and Engineering Department, North Carolina State University, Raleigh, NC 27695-7916, USA.
A. Karoui
Affiliation:
: Nanoscience and Nanotechnology Research Center, Shaw University
G. Rozgonyi
Affiliation:
: Materials Science and Engineering Department, North Carolina State University, Raleigh, NC 27695-7916, USA.
Get access

Abstract

Strained-silicon (ε -Si) is essential for future nanoscale MOSFET devices. In this paper we report on the dynamics of strain relaxation in Si/SiGe heterostructures, investigated by transient nonlinear finite element analysis. The contribution to total misfit strain is found largely plastic in the graded SiGe layer and the top of the Si substrate, while it is mainly elastic in the strained Si layer and part of the SiGe constant layer. The calculated lattice parameter for the strained Si layer is about 5.47Å for Si0.8Ge0.2 and 5.52 Å for Si0.6Ge0.4. Calculated threading dislocation density was about 5.6x105 cm-2 for x=0.20 and 2.17x106cm-2 for x=0.40. A plastic strain rate of 8.4x10-3s-1 for Si0.8Ge0.2 and 4.1x10-2 s-1 for Si0.6Ge0.4 leading to a density of moving dislocations of ~2.2x109 cm-2 and ~ 1010cm-2, respectively, have been obtained. The elastic strain in the strained-Si layer appeared to increase with increasing the cooling rate, while plastic work was found to be independent of cooling rates.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Jaint, S C and Hayes, W, Semicond. Sci. Technol., 6, 547576 (1991).Google Scholar
2. Kasper, E., Properties of Strained and Relaxed Silicon Germanium, EMIS Datareviews, 12, INSPEC (1995).Google Scholar
3. ANSYS Inc., Theory Reference, Release 7.1 Manual, ANSYS Inc. Google Scholar
4. Crisfield, M. A., Non-linear Finite Element Analysis of Solid and Structures, Vol. 2, John Wiley & Sons, New York, 1995.Google Scholar
5. Schroter, W., Brian, H. G., Siethoff, H., J. Appl. Phys., 54(4), 1816 (1983).Google Scholar
6. Lowney, D. et al. , Semicond. Sci. Technol. 17, 1081 (2002).Google Scholar
7. Nakashima, S. et al. , Appl. Phys. Let., 84 (14), 2533 (2004).Google Scholar
8. Fitzgerald, E.A., Xie, Y.-H., Green, M. L., Brasen, D., Kortan, A. R., Michel, J., Mii, Y.-J, and Weir, B. E., App. Phys. Lett., 59(7), 811 (1991).Google Scholar
9. Bugiel, E., Zaumseil, P., Appl. Phys. Lett., 62(17), 2051 (1993).Google Scholar
10. Koppensteiner, E., Schuh, A., Bauert, G., Holy, V., Watson, G. P., Fitzgerald, E.A., J. Phys. D, 28, A114 (1995).Google Scholar
11. Romanov, A. E., Pompe, W., Mathis, S., Beltz, G. E., Speck, J. S., J. App. Phys., 85(1), 182 (1999).Google Scholar
12. Currie, M. T., Samavedam, S. B., Langdo, T. A., Leitz, C. W., Fitzgerald, E. A., Appl. Phys. Let., 72(14) (1998).Google Scholar
13. Samavedam, S. B., Taylor, W. J., Grant, J. M., Smith, J. A., Tobin, P. J., Dip, A., and Phillips, A. M., J. Vac. Sci. Technol. B, 17(4), 1424 (1999).Google Scholar
14. Tuppen, C. G. and Gibbings, C. J., Thin Solid Films, 183, 133 (1989).Google Scholar