Published online by Cambridge University Press: 15 February 2011
Proton magnetic resonance imaging (MRI) is applied to determine non–destructively the open porosity of biodegradable scaffolds of poly(3–hydroxybutyrate-–3–hydroxyvalerate) in vitro and tissue infiltration in vivo. Porous matrices with copolymers having 12% and 24% 3–hydroxyvalerate (HV) are prepared using a solvent casting technique. The results of open porosity P(%) measured by MRI (PMRI) show good agreement with those obtained by gravimetry analysis (PGA). Thus, for scaffolds with 12% HV, PMRI = 91.0 ±1.0 (mean ± s.d.) and PGA = 88.0 ± 0.75; and for those with 24% HV, PMRI = 89.4 ±1.3 and PGA = 88.8 ± 1.0. Also, the extent of tissue infiltration in these scaffolds determined by MRI in vivo was similar to that observed by histology. These results illustrate the potential of MRI methods for investigating the behavior of biodegradable scaffolds non-invasively in applications for tissue engineering.