Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T19:58:12.306Z Has data issue: false hasContentIssue false

NMR and Computational Studies of Ba8Ga16Sn30 Clathrates

Published online by Cambridge University Press:  01 February 2011

Sergio Yanuen Rodriguez
Affiliation:
[email protected]@yahoo.com, Texas A&M University, Department of Physics, 77843, Texas, United States
Xiang Zheng
Affiliation:
[email protected], Texas A&M University, Department of Physics, 77843, Texas, United States
Laziz Saribaev
Affiliation:
[email protected], Texas A&M University, Department of Physics, 77843, Texas, United States
Joseph H Ross Jr
Affiliation:
[email protected], Texas A&M University, Department of Physics, 77843, Texas, United States
Get access

Abstract

We have synthesized type-VIII and type-I Ba8Ga16Sn30 clathrates by using different annealing treatments, confirmed with XRD and electron microprobe measurements. NMR lineshape measurements identified a broad resonance corresponding to first-order-shifted satellites. Simulations for the type I structure based on first principles calculations provided an excellent fit to the data, with the best agreement provided by the calculated lowest-energy configuration, having no Ga-Ga bonds. These results allow us to address local configurations within the random type-I alloy, as well as atomic displacements and bond-length distributions, which we compare to experiment.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Slack, G. A. MRS Symp. Proc. 478, 47 (1997).Google Scholar
2 Kawaji, H. Horie, H. Yamanaka, S. and Ishikawa, M. Phys. Rev. Lett. 74, 1427 (1995).10.1103/PhysRevLett.74.1427Google Scholar
3 Hermann, R. P. Keppens, V. Bonville, P. Nolas, G. S. Grandjean, F. Long, G. J. Christen, H. M., Chakoumakos, B. C. Sales, B. C. and Mandrus, D. Phys. Rev. Lett. 97, 017401, (2006).Google Scholar
4 Suekuni, K. Avila, M. A. Umeo, K. Fukuoka, H. Yamanaka, S. Nakagawa, T. and Takabatake, T., Phys. Rev. B 77, 235119, (2009).Google Scholar
5 Avila, M. A. Suekuni, K. Umeo, K. Fukuoka, H. Yamanaka, S. and Takabatake, T. Appl. Phys. Lett. 92, 041901, (2008).Google Scholar
6 Huo, D. Sakata, T. Sasakawa, T. Avila, M. A. Tsubota, M. Iga, F. Fukuoka, H. Yamanaka, S., Aoyagi, S. and Takabatake, T. Phys. Rev. B 71, 075113 (2005).10.1103/PhysRevB.71.075113Google Scholar
7 Toby, B. H. J. Appl. Cryst. 34, 210 (2001).Google Scholar
8 Lue, C. S. and Ross, J. H. Jr. , Phys. Rev. B 58, 9763, (1998).10.1103/PhysRevB.58.9763Google Scholar
9 Blaha, P. Schwarz, K. Madsen, G. Kvaniscka, D. and Luitz, J. Wien2k An Augmented Plane Wave+Local Orbitals Program for Calculating Crystal Properties (Technische Universitat Wien, Austria, 2001).Google Scholar
10 Blake, N. P. Bryan, D. Latturner, S. Mollnitz, L. Stucky, G. D. and Metiu, H. J. Chem. Phys. 114, 10063 (2001).Google Scholar
11 Gou, W. Rodriguez, S. Y. Li, Y. and Ross, J. H. Jr.. , Phys. Rev. B 80, 144108 (2009).10.1103/PhysRevB.80.144108Google Scholar
12 Kozina, M. Bridges, F. Jiang, Y. Avila, M. A. Suekuni, K. and Takabatake, T. Phys. Rev. B, 80, 212101, (2009).10.1103/PhysRevB.80.212101Google Scholar
13 Bastow, T. J. and West, G. W. J. Phys.: Condens. Matter 15, 8389, (2003).Google Scholar
14 Carter, G. C. Bennett, L. H. and Kahan, D. J. Metallic Shifts in NMR, Pergamon, New York, (1977).Google Scholar
15 Perdew, J. P. Burke, K. and Ernzerhof, M. Phys. Rev. Lett. 77, 3865 (1996).Google Scholar
16 Jiang, Y. Bridges, F. Avila, M. A. Takabatake, T. Guzman, J. Kurczveil, G. Phys. Rev. B 78, 014111 (2008).Google Scholar
17 Gou, W. Ph.D. Dissertation 2007 (unpublished).Google Scholar
18 Slichter, C. P. Principles of Magnetic Resonance, New York: Springer-Verlag, (1990).Google Scholar