Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-28T10:43:18.674Z Has data issue: false hasContentIssue false

Neutron Imaging Investigations of the Hydrogen Related Degradation of the Mechanical Properties of Zircaloy-4 Cladding Tubes

Published online by Cambridge University Press:  14 March 2013

M. Grosse
Affiliation:
Karlsruhe Institute of Technology – Institute for Applied Materials, Karlsruhe, Germany
S. Valance
Affiliation:
Paul Scherrer Institut, Villigen, Switzerland
J. Stuckert
Affiliation:
Karlsruhe Institute of Technology – Institute for Applied Materials, Karlsruhe, Germany
M. Steinbrueck
Affiliation:
Karlsruhe Institute of Technology – Institute for Applied Materials, Karlsruhe, Germany
M. Walter
Affiliation:
Karlsruhe Institute of Technology – Institute for Applied Materials, Karlsruhe, Germany
A. Kaestner
Affiliation:
Paul Scherrer Institut, Villigen, Switzerland
S. Hartmann
Affiliation:
Paul Scherrer Institut, Villigen, Switzerland
J. Santisteban
Affiliation:
Comision Nacional de Energia Atomica, Bariloche, Argentina
Get access

Abstract

The hydrogen uptake and redistribution in Zircaloy-4 specimens applied to loss of coolant accident (LOCA) simulation experiments and in mechanical pre-loaded samples were investigated by means of ex-situ and in-situ neutron imaging. The results of these investigations were compared with results from mechanical tests. Hydrogen absorption may have a strong influence on the mechanical properties of zirconium alloys. A local enrichment of the absorbed hydrogen may result in brittle fracture at these positions in the tensile test. On the other hand, stress fields in the material affect the hydrogen uptake as well as its distribution in the material. In-situ investigations confirmed the existence of an initial oxide layer formed at room temperature by contact with air. This oxide layer suppresses the hydrogen uptake until dissolution in the zirconium matrix.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Douglass, D. L., Atomic Energy Review, Supplement 1971, “The Metallurgy of Zirconium, ” International Atomic Energy Agency, Vienna, 1971, p. 7.Google Scholar
Kammenzind, B. F., Berquist, B. M., Bajaj, R., Kreyns, P. H. and Franklin, D. G., Proc. Zirconium in Nucl. Ind., 12th Int. Symp., 196, (2000)Google Scholar
Uetsuka, H., Furuta, T. and Kawasaki, S., J. Nucl. Sci. & Techn. 18, 705 (1981)CrossRefGoogle Scholar
Nagas, F. and, Fuketa, T., J. Nucl. Sci. & Techn. 41, 723 (2005)CrossRefGoogle Scholar
Hózer, S., Gyóri, C., Horváth, M., Nogy, I., Maróti, L., Matus, L. and Windberg, P., Nucl. Techn. 152, 273 (2005)CrossRefGoogle Scholar
Kim, J. H., Choi, B. K., Baek, J. H. and Jeong, Y. H., Y. H., Nucl. Engin. & Design 236, 2386 (2006)CrossRefGoogle Scholar
Brachet, J. C., Vandenberghe-Maillot, V., Portier, L., Gilbon, D., Lesbros, A, Waeckel, N. and Mardon, J. P., J. ASTM Intern. 5, JAI101116 (2008)CrossRefGoogle Scholar
Billone, M., Yan, Y., Burtseva, T. and Daum, R., “Cladding Embrittlement During Postulated Loss-of-Coolant Accidents, ” NUREG/CR-6967 (2008)Google Scholar
Grosse, M., Lehmann, E., Vontobel, P., Steinbrueck, M., Nucl. Instr.. & Methods in Phys. Res. A 566, 739 (2006)CrossRefGoogle Scholar
Grosse, M., van den Berg, M., Goulet, C., Lehmann, E., Schillinger, B., Nucl. Instr.. & Meth.. In Phys. Res. A 651, 253 (2011)CrossRefGoogle Scholar
Grosse, M., Stuckert, J., Steinbrück, M. and Kaestner, A., J. Nucl. Mater. 420, 575 (2012)CrossRefGoogle Scholar