Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-28T19:41:35.106Z Has data issue: false hasContentIssue false

A Neutral Barrier at CGS Grain Boundaries - Compositional and Structural Dependencies

Published online by Cambridge University Press:  01 February 2011

Michael Hafemeister
Affiliation:
[email protected], HMI Berlin, SE2, Glienicker Str.100, Berlin, 14109, Germany, +49 (030) 8062 2563 , +49 (030) 8062 3199
Susanne Siebentritt
Affiliation:
[email protected], Hahn-Meitner-Institut, Glienicker Str.100, Berlin, 14109, Germany
Sascha Sadewasser
Affiliation:
[email protected], Hahn-Meitner-Institut, Glienicker Str.100, Berlin, 14109, Germany
Christiane Frank-Rotsch
Affiliation:
[email protected], Institut für Kristallzüchtung, Max-Born-Str. 2, Berlin, 12489, Germany
Martha Ch. Lux-Steiner
Affiliation:
[email protected], Hahn-Meitner-Institut, Glienicker Str.100, Berlin, 14109, Germany
Get access

Abstract

Unlike other photoactive layers (e.g. Si) polycrystalline chalcopyrite layers achieve higher efficiency than monocrystalline ones. Although grain boundaries may play an important role for this phenomenon, there is currently no commonly accepted model for the electronic structure of grain boundaries. First experimental results on CuGaSe2 absorbers indicated a small neutral barrier for majority carriers (20-40meV) at sigma 3 grain boundaries, which is the predominant grain boundary in polycrystalline chalcopyrite absorbers [1]. These results are in discrepancy with theory, which predicts a 10 times higher barrier; we suspect that the copper excess might reduce the barrier height.

Here we present a study using Hall-effect and Kelvin Probe Force Microscopy (KPFM) measurements to investigate the composition dependence of the barrier height of epitaxially grown CuGaSe2 layers containing a sigma 3 grain boundary as a function of the Cu/Ga ratio. First results show that the barrier height is independent of the copper content. In addition, we present initial results on sigma 9 grain boundaries which are observed to occur in high efficiency absorbers.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Siebentritt, S. and Schuler, S., J. Phys. Chem. Solids 64, 1621 (2003).Google Scholar
2. Seto, J.Y.W., J. Appl. Phys. 46, 5247 (1975).Google Scholar
3. Sadewasser, S., Glatzel, Th., Schuler, S., Nishiwaki, S., Kaigawa, R., and Lux-Steiner, M. Ch., Thin Solid Films 431–432, 257 (2003).Google Scholar
4. Schuler, S., Nishiwaki, S., Beckmann, J., Rega, N., Brehme, S., Siebentritt, S. and Lux-Steiner, M. Ch., in 29th Photovoltaic Specialist Conference (IEEE, New York, 2002), p. 504.Google Scholar
5. Visoly-Fisher, I., Cohen, S.R., Ruzin, A. and Cahen, D., Adv. Mater. 16 (2004).Google Scholar
6. Metzger, W.K. and Gloeckler, M., J. Appl. Phys. 98, 063701 (2005).Google Scholar
7. Taretto, K., Rau, U. and Werner, J.H., Thin Solid Films 480–481, 8 (2005).Google Scholar
8. Persson, C. and Zunger, A., Appl. Phys. Lett. 87, 211904 (2005).Google Scholar
9. Persson, C. and Zunger, A., Phys. Rev. Lett. 91, 266401 (2003).Google Scholar
10. Gloeckler, M., Sites, J.R. and Metzger, W.K., J. Appl. Phys. 98, 113704 (2005).Google Scholar
11. Siebentritt, S., Sadewasser, S., Wimmer, M., Leendertz, C., Eisenbarth, T., and Lux-Steiner, M.Ch., Phys. Rev. Lett. 97, 146601 (2006).Google Scholar
12. Sommerhalter, Ch., Matthes, Th.W., Glatzel, Th., Jäger-Waldau, A., and Lux Steiner, M. Ch., Appl. Phys. Lett. 75, 286 (1999).Google Scholar
13. Sadewasser, S., Glatzel, Th., Rusu, M., Jäger-Waldau, A., and Lux-Steiner, M. Ch., Appl. Phys. Lett. 80, 2979 (2002).Google Scholar