Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T02:17:33.494Z Has data issue: false hasContentIssue false

Nb2O5-based solar fabrics

Published online by Cambridge University Press:  31 January 2011

Anh Le Viet
Affiliation:
[email protected], NUS, singapore, Singapore
Rajan Jose
Affiliation:
[email protected], NUS, singapore, Singapore
Seeram Ramakrishna
Affiliation:
[email protected], NUS, singapore, Singapore
Get access

Abstract

Photo active fibers containing dye anchored Nb2O5 nanorods, hole conduction and electron conduction materials were synthesized by the electrospinning technique. A 1.92 cm2 piece of fabric, composed of randomly aligned nanorods, was tested as a photovoltaic device under standard illumination conditions. The solar fabric exhibited an open circuit voltage (Voc) of ˜0.67 V, a short current density (JSC) of 4.77×10-4 mA/cm2, a fill factor (FF) of ˜15%, and an overall photovoltaic conversion efficiency (η) of 4.5×10-7%. This article presents for the first time the application of Nb2O5 in solar fabric.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] O'Regan, B., Gratzel, M. Nature 1991, 353, 737.Google Scholar
[2] Han, L. Fukui, A. Fuke, N. Koide, N. Yamanaka, R. 4th World Conference on Photovoltaic Energy Conversion (WCEP-4), Hawai, May, 2006.Google Scholar
[3] (a) Senecal, K. J., Ziegler, D. P. He, J. Mosurkal, R. Schreuder-Gibson, H., Samuelson, L. A. Mat. Res. Soc. Symp. Proc. 2002, 78, BB 9.5.1. (b) C. Drew, X. Wang, K. J. Senecal, H. Schreuder-Gibson, J. He, J. Kumar, L. A. Samuelson, J. Macromol. Sci., Pure Appl. Chem. 2002, A39, 1085.Google Scholar
[4] (a) Gaudiana, R. Eckert, R. Cardone, J. Ryan, J. Montello, A. Proc. of SPIE 2006, 6334, 633401. (b) J. Ramier, N. D. Costa, C. J. G. Plummer, Y. Leterrier, Thin Solid Films 2008, 516, 1913.Google Scholar
[5] (a) Park, J. H. Jun, Y. Yun, H. G. Lee, S. Y. J. Electrochem. Soc. 2008, 155, F145. (b) Y. Jun, J. Kim, M. G. Kang, Sol. Energy Mater. Sol. Cells 2007, 91, 779.Google Scholar
[6] (a) Fan, X. Chu, Z. Chen, L. Zhang, C. Wang, F. Tang, Y. Sun, J. Zou, D. Appl. Phys. Lett. 2008, 92, 113510. (b) J. Ramier, C. J. G. Plummer, Y. Leterrier, J. A. E. Månson, B. Eckert, R. Gaudiana, Renew. Energ. 2008, 33, 314.Google Scholar
[7] Nair, A. S. Archana, P. S. Jose, R. Teng, T. H., Ramakrishna, S. ACS Applied Materials and Interfaces, 2009 (under revision)Google Scholar
[8] Ai, X. Guo, J. Anderson, N. A. Lian, T. The Journal of Physical Chemistry B 2004, 108, 12795.Google Scholar
[9] Guo, P. Aegerter, M. A. Thin Solid Films 1999, 351, 290.Google Scholar
[10] Sayama, K. Sugihara, H. Arakawa, H. Chemistry of Materials 1998, 10, 3825.Google Scholar
[11] A. Le Viet, Reddy, M. V. Jose, R. B. Chowdary, V. R. and Ramakrishna, S. J. Phys. Chem. C, 2009 (to be published))Google Scholar