Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T10:18:41.835Z Has data issue: false hasContentIssue false

Nanostructures with Group IV Nanocrystals Obtained by LPCVD and Thermal Annealing of SiGeO Layers

Published online by Cambridge University Press:  01 February 2011

Bruno Morana
Affiliation:
[email protected], Universidad Politécnica de Madrid, E.T.S.I.T., Tecnología Electrónica, Madrid, 28040, Spain
Andrés Rodríguez
Affiliation:
[email protected], Universidad Politécnica de Madrid, Tecnología Electrónica, Ciudad Universitaria s/n, Madrid, 28040, Spain
Jesús Sangrador
Affiliation:
[email protected], Universidad Politécnica de Madrid, E.T.S.I.T., Tecnología Electrónica, Madrid, 28040, Spain
Tomás Rodríguez
Affiliation:
[email protected], Universidad Politécnica de Madrid, E.T.S.I.T., Tecnología Electrónica, Madrid, 28040, Spain
Óscar Martínez
Affiliation:
[email protected], U. de Valladolid, E.T.S.I.I., Física de la Materia Condensada, Valladolid, 47011, Spain
Juan Jiménez
Affiliation:
[email protected], U. de Valladolid, E.T.S.I.I., Física de la Materia Condensada, Valladolid, 47011, Spain
Andreas Kling
Affiliation:
[email protected], Universidade de Lisboa, Centro de Física Nuclear, Lisbon, 1649-003, Portugal
Get access

Abstract

Nanocrystals embedded in an oxide matrix have been fabricated by annealing SiGeO films deposited by LPCVD. The composition of the oxide layers and its evolution after annealing as well as the presence and nature of nanocrystals in the films have been studied by several experimental techniques. The results are analyzed and discussed in terms of the main deposition parameters and the annealing temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Desnica, U. V. et al. Superlattices and Microstructures (2008), in press (DOI: 10.1016/j.spmi.2008.01.021).Google Scholar
2. Kan, E. W. H. Choi, W. K. Kim, W. K. Fitzgerald, E. A. Antoniadis, D. A.. J. Appl. Phys. 95 (2004) 3148.Google Scholar
3. Rodríguez, A., Ortiz, M. I. Sangrador, J. Rodríguez, T., Avella, M. Prieto, Á. C., Torres, A. Jiménez, J., Kling, A. Ballesteros, C.. Nanotechnology 18 (2007) 065702.and references threin.Google Scholar
4. Rodríguez, A., Ortiz, M. I. Sangrador, J. Rodríguez, T., Avella, M. Prieto, Á. C., Jiménez, J., Kling, A. Ballesteros, C.. Phys. Stat. Sol. (a) 204 (2007) 1639. and references therein.Google Scholar
5. Doolittle, L. R. Nucl. Instr. and Meth. 9 (1985) 344. The latest version of this program can be found at http://www.genplot.com Google Scholar
6. Campbell, H. Fauchet, P. M.. Solid State Commun. 58 (1986) 739.Google Scholar
7. Avella, M. Prieto, Á.C., Jiménez, J., Rodríguez, A., Sangrador, J. Rodríguez, T.. Solid State Communications 136 (2005) 224.and references therein.Google Scholar