Article contents
Nanostructured Silicon Oxide Dual-Function Layer in Amorphous Silicon Based Solar Cells
Published online by Cambridge University Press: 25 May 2012
Abstract
We report the results of using n-type hydrogenated nanocrystalline silicon oxide alloy (nc-SiOx:H) in hydrogenated nanocrystalline silicon (nc-Si:H) and amorphous silicon germanium alloy (a-SiGe:H) single-junction solar cells. We used VHF glow discharge to deposit nc-SiOx:H layers on various substrates for material characterizations. We also used VHF glow discharge to deposit the intrinsic layer in nc-Si:H solar cells. RF glow discharge was used for the deposition of the doped layers and the intrinsic layer in a-SiGe:H solar cells. Various substrates such as stainless steel (SS), Ag coated SS, and ZnO/Ag coated SS were used for different cell structures. We found that by using nc-SiOx:H to replace the ZnO and the a-Si:H n-layer in nc-Si:H solar cells, the cell structure is greatly simplified, while the cell performances remain nearly identical to those made using the conventional n-i-p structure on standard ZnO/Ag BR’s. Solar cells with nc-SiOx:H as the n layer directly deposited on textured Ag show similar quantum efficiency (QE) as the n-i-p cells on ZnO/Ag BRs. In both cases, QE is higher than that in the n-i-p cells made directly on Ag coated SS. This effect is probably caused by the shift of surface plasmon-polariton resonance frequency due to the difference in index of refraction of ZnO, nc-SiOx:H, and Si.
- Type
- Articles
- Information
- Copyright
- Copyright © Materials Research Society 2012
References
REFERENCES
- 2
- Cited by