Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T02:50:20.001Z Has data issue: false hasContentIssue false

Nanostructured Metal Oxide and Composite Electrodes for Use in Ultracapacitors

Published online by Cambridge University Press:  15 March 2011

Michael T. Brumbach
Affiliation:
Electronic and Nanostructured Materials, Sandia National Laboratories, Albuquerque, NM 87185, U.S.A.
Todd M. Alam
Affiliation:
Electronic and Nanostructured Materials, Sandia National Laboratories, Albuquerque, NM 87185, U.S.A.
Paul G. Kotula
Affiliation:
Materials Characterization, Sandia National Laboratories, Albuquerque, NM 87185, U.S.A.
Bonnie B. McKenzie
Affiliation:
Materials Characterization, Sandia National Laboratories, Albuquerque, NM 87185, U.S.A.
Bruce C. Bunker
Affiliation:
Electronic and Nanostructured Materials, Sandia National Laboratories, Albuquerque, NM 87185, U.S.A.
Get access

Abstract

Maximizing power and energy densities of ultracapacitors requires configuring redox-active materials in specific architectures that: 1) maximize electrolyte-electrode contact area, 2) minimize transport distances for both electrons and charge compensating species, and 3) minimize transport barriers. We have developed a simple solution-based method, using an organic template, that enables us to introduce hierarchical porosity in ruthenium oxide down to the nano-scale by controlling the oxidative crystal growth of RuO2. The high capacitances of the resulting nanostructured electrodes were found to be comparable to hydrous ruthenium oxide formed under dramatically different conditions. Materials characterization reveals that the organic template directs structure formation and promotes hydroxyl retention.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kötz, R. and Carlen, M., Elec. Acta. 45, 2483–98 (2000).Google Scholar
2. Conway, B. E., Electrochemical Capacitors: Scientific Fundamentals and Technological Applications, (Kluwer, 1999) pp. 599.Google Scholar
3. McKeown, D. A., Hagans, P. L., Carette, L. P. L., Russell, A. E., Swider, K. E., and Rolison, D. R., J. Phys. Chem. B. 103, 4825–32 (1999).Google Scholar
4. Dmowski, W., Egami, T., Swider-Lyons, K. E., Love, C. T., and Rolison, D. R., J. Phys. Chem. B. 106, 12677–83 (2002).Google Scholar
5. Rolison, D. R., , Hagans, Swider, K. E., and Long, J. W., Lang. 15, 774 (1999).Google Scholar
6. Zheng, J. P., Cygan, P. J., and Jow, T. R., J. Electrochem. Soc. 142, 8 2699–703 (1992).Google Scholar
7. Zheng, J. P. and Xin, Y., J. Power Sources. 110, 8690 (2002).Google Scholar
8. Fang, Q. L., Evans, D. A., Roberson, S. L., and Zheng, J. P., J. Electrochem. Soc. 148, 8 A8337 (2001).Google Scholar
9. Barbieri, O., Hahn, M., Foelske, A., and Kotz, R., J. Electrochem. Soc. 153, 11 A204954 (2006).Google Scholar
10. Foelske, A., Barbieri, O., Hahn, M., and Kotz, R., Electrochem. Sol. St. Lett. 9, 6 A268-72 (2006).Google Scholar
11. Chang, K. H., Hu, C. C., and Chou, C. Y., Chem. Mat. 19, 8 2112–9 (2007).Google Scholar
12. Kim, I. H. and Kim, K. B., J. Electrochem. Soc. 153, 2 A3839 (2006).Google Scholar
13. Zheng, J. P., Electrochem. Sol. St. Lett. 2, 8 359–61 (1999).Google Scholar
14. Min, M., Machida, K., Jang, J. H., Naoi, K., J. Electrochem. Soc. 153, 2 A3348 (2006).Google Scholar
15. Lee, J. K., Pathan, H. M., Jung, K. D., and Joo, O. S., J. Power Sources. 159, 1527–31 (2006).Google Scholar
16. Susanti, D., Tsai, D. S., Huang, Y. S., Korotcov, A., and Chung, W. H., J. Phys. Chem. C. 111, 26 9530–7 (2007).Google Scholar
17. Hu, C. C., Chang, K. H., Lin, M. C., and Wu, Y. T., Nano Lett. 6, 12 2690–5 (2006).Google Scholar
18. Tan, H., Ye, E., and Fan, W. Y., Adv. Mat., 18, 619–23 (2006).Google Scholar
19. Cross, M. W., Varhue, W. J., Hitt, D. L., and Adams, E., Nanotechnology, 19, 045611–1. (2008).Google Scholar
20. Chu, S. Z., Wada, K., Inoue, S., Hishita, S., and Kurashima, K., J. Phys. Chem. B. 107, 37 10180–4 (2003).Google Scholar
21. Chu, S. Z., Inoue, S., Wada, K., and Hishita, S. J. Electrochem. Soc. 151, 1 C3844 (2004).Google Scholar
22. Subhramannia, M., Balan, B. K., Sathe, B. R., Mulla, I. S., and Pillai, V. K., J. Phys. Chem. C. 111, 44 16593–600 (2007).Google Scholar
23. Lee, D. J., Yim, S. S., Kim, K. S., Kim, S. H., and Kim, K. B., Electrochem Sol. St. Lett. 11, 6 K613 (2008).Google Scholar
24. Sugimoto, W., Iwata, H., Murakami, Y., and Takasu, Y., J. Electrochem. Soc. 151, 8 A11817 (2004).Google Scholar
25. Sugimoto, W., Yokoshima, K., Murakami, Y., and Takasu, Y., Elec. Acta. 52, 1742–8 (2006).Google Scholar
26. Sugimoto, W., Iwata, H., Yasunaga, Y., Murakami, Y., and Takasu, Y., Agnew. Chem. Int. Ed. 42, 4092–6 (2003).Google Scholar
27. Sugimoto, W., Iwata, H., yokoshima, K., Murakami, Y., and Takasu, Y., J. Phys. Chem. B. 109, 15 7330–8 (2005).Google Scholar
28. Long, J. W., Swider, K. E., Merzbacher, C. I., and Rolison, D. R., Lang. 15, 3 780–5 (1999).Google Scholar
29. Doubova, L. M., Daolio, S., and Battisti, A. De, J. Electroanal. Chem. 532, 2533 (2002).Google Scholar
30. Ardizzone, S., Fregonara, G., and Trasatti, S., Elec. Acta. 35, 263 (1990).Google Scholar
31. Trassatti, S., Elec. Acta. 36, 225 (1991).Google Scholar
32. Brumbach, M. T., Bunker, B. C., et al. work to be published.Google Scholar
33. Antonelli, D. M. and Ying, J. Y., Angew. Chem. Int. Ed. Engl. 35, 4 426–30 (1996).Google Scholar