Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-28T10:40:16.730Z Has data issue: false hasContentIssue false

Nanostructural Evolution in Non-epitaxial Growth of Thin Films

Published online by Cambridge University Press:  01 February 2011

Minghui Hu
Affiliation:
[email protected], Brookhaven National Laboratory, Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, United States, 631 344 3747, 631 344 3407
Suguru Noda
Affiliation:
[email protected], The University of Tokyo, Department of Chemical System Engineering, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
Hiroshi Komiyama
Affiliation:
[email protected], The University of Tokyo, Department of Chemical System Engineering, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
Get access

Abstract

The initial growth of non-epitaxial thin films was studied and discussed using the concept that thermodynamics controls the unit-structure within the surface diffusion length of deposits, whereas kinetics controls the ensemble-structure on a large scale. Three basic topics, growth mode (island shape), crystalline (island inner) structure, time-dependent properties of island ensemble (island size, distance, and density), are summarized based on the investigation of thin film growth of metals on TiO2, Cu on SiO2 and Ti/SiO2. This study provides fundamental understanding of structural control during thin film growth, and further can be applied to various advanced devices for electronics, photonics, catalysis, and energy applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Musolino, V., Corso, A. Dal, Selloni, A., Phys. Rev. Lett. 83, 2761 (1999).Google Scholar
2. Fuks, D., Dorfman, S., Zhukovskii, Y. F., Kotomin, E. A., Stoneham, A. M., Surf. Sci. 499, 24 (2002).Google Scholar
3. Kizuka, K., Tanaka, N., Phys. Rev. B 56, R10079 (1997).Google Scholar
4. Bajt, S., Steams, D. G., Kearney, P. A., J. Appl. Phys. 90, 1017 (2001).Google Scholar
5. Jose-Yacaman, M., Marin-Almazo, M., Ascencio, J. A., J. Mol. Catal. A 173, 61 (2001).Google Scholar
6. Shirakawa, H., Komiyama, H., J. Nanoparticle Research 1, 17 (1999).Google Scholar
7. Dureuil, V., Ricolleau, C., Gandais, M., Grigis, C., Lacharme, J. P., Naudon, A., J. Crystal Growth 233, 737 (2001).Google Scholar
8. Campbell, C. T., Parker, S. C., Starr, D. E., Science 298, 811 (2002).Google Scholar
9. Campbell, C. T., Surf. Sci. Rep. 27, 1 (1997).Google Scholar
10. Hu, M., Noda, S., Komiyama, H., Surf. Sci. 513, 530 (2002).Google Scholar
11. Lide, D. R. (Ed.), "CRC Handbook of Chemistry and Physics", CRC Press, Boca Raton, London, New York, Washington DC (1999).Google Scholar
12. Hu, M., Noda, S., Tsuji, Y., Okubo, T., Yamaguchi, Y., Komiyama, H., J. Vac. Sci. Technol. A 20, 589 (2002).Google Scholar
13. Hu, M., Noda, S., Okubo, T., Yamaguchi, Y., Komiyama, H., J. Appl. Phys. 94, 3492 (2003).Google Scholar
14. Kelber, J. A., Niu, C., Shepherd, K., Jennison, D. R., Bogicevic, A., Surf. Sci. 446, 76 (2000).Google Scholar
15. Hu, M., Noda, S., Komiyama, H., J. Appl. Phys. 93, 9336 (2003).Google Scholar
16. Li, T. Q., Noda, S., Komiyama, H., Yamamoto, T., Ikuhara, Y., J. Vac. Sci. Technol. A 21, 17171723 (2003).Google Scholar
17. Ekinci, K. L., Valles, J. M. Jr, Acta Mater. 46, 4549 (1998).Google Scholar