Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-12-03T00:22:04.649Z Has data issue: false hasContentIssue false

Nanoscaled Filled Sol-Gel Hybrid Materials for Powder Coatings

Published online by Cambridge University Press:  10 February 2011

S Seneur
Affiliation:
Institut für Neuc Materialien, Im Stadtwald, Geb. 43, D-66123 Saarbrücken, Germany
C. Dutfurth
Affiliation:
Institut für Neuc Materialien, Im Stadtwald, Geb. 43, D-66123 Saarbrücken, Germany
J. Muhle
Affiliation:
Institut für Neuc Materialien, Im Stadtwald, Geb. 43, D-66123 Saarbrücken, Germany
A. Poppe
Affiliation:
Institut für Neuc Materialien, Im Stadtwald, Geb. 43, D-66123 Saarbrücken, Germany
H. Schmidt
Affiliation:
Institut für Neuc Materialien, Im Stadtwald, Geb. 43, D-66123 Saarbrücken, Germany
Get access

Abstract

The sol-gel process has been applied for the synthesis of inorganic-organic powder materials. For this purpose, low reactivity and, for reasons of comparison, nanoscaled sol-gel precursors and nanoscaled silica filler were used to synthesize a low molecular weight inorganic-organic composite which was meltable between 85°C and 100°C and curable at temperatures of 150°C - 200°C. The powders were used for electrostatic coating of aluminum sheets. The resulting coatings of the unfilled system exhibited excellent mechanical properties, e. g. a high abrasion resistance (weight losses between 6 mg and 10 mg per 1000 cycles by taber abrader test (ASTM D1044)) and high values for hardness (universal hardness (DIN 55676): 150 N/mm2). The hardness of the materials was increased up to 210 N/mm2 by the addition of silica, while the abrasion resistance remained unaffected.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Misev, T. A., Powder Coatings Chemistry and Technology, J. Wiley & Sons, Chichester, 1991.Google Scholar
[2] Richart, D. S. in Proceedings of the Waterborne, High-Solids, Powder Coatings Symposium, 22 th, 1995, p. 1–31.Google Scholar
[3] Schmidt, H., Geiter, E., Mennig, M., Krug, H., Becker, C. and Winkler, R.-P., Journal of Sol- Gel Science and Technology 13, 397404 (1998).10.1023/A:1008660909108Google Scholar
[4] Wang, B. and Wilkes, G. L., U. S. Patent No 5316855 (31 May 1994).Google Scholar
[5] Schmidt, H., Scholze, H. and Ttinker, G., Europ. Patent No 36 648 (20 March 1981).Google Scholar
[6] Schmidt, H., Scholze, H. and Tünker, G., J. Non-Cryst. Solids 80 (1986) 557.10.1016/0022-3093(86)90446-1Google Scholar
[7] Witucki, G. L. and Vincent, H. L., U. S. Patent No 5 280 098 (18 January 1994).Google Scholar
[8] Hair, M. L., Infrared Spectroscopy in Surface Chemistry, M. Dekker Inc., New York, 1967.Google Scholar