Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T12:54:32.753Z Has data issue: false hasContentIssue false

Nanoscale Analysis of Defects in Semiconductors and Dielectrics by Means of Charge-transient Spectroscopy/microscopy

Published online by Cambridge University Press:  01 February 2011

Štefan Lányi
Affiliation:
[email protected], Institute of Physics, SAS, Solid State Physics, Dubravska cesta 9, Bratislava, SK-845 11, Slovakia, +421259410525, +421254776085
Vojtech Nádaždy
Affiliation:
[email protected], Institute of Physics, SAS, Dúbravská cesta 9, Bratislava, SK-845 11, Slovakia
Miloslav Hruškovic
Affiliation:
[email protected], Slovak University of Technology, Faculty od Electrical Engineering and Information Technology, Ilkovicova 3, Bratislava, SK-812 19, Slovakia
Ján Hribik
Affiliation:
[email protected], Slovak University of Technology, Faculty od Electrical Engineering and Information Technology, Ilkovicova 3, Bratislava, SK-812 19, Slovakia
Get access

Abstract

We discuss the possibilities of analysis of electrically active defects in semiconductors and dielectrics by means of Isothermal Capacitance-Transient Spectroscopy and Isothermal Charge-Transient Spectroscopy, applied on sub-micrometer scale. While the first of them utilizes the relaxation of the depletion layer, caused by emission of trapped charges and requires sufficient conductivity, the second directly integrates the transient current and can be applied also to low-conductivity materials like dielectrics.

We present some results obtained on pentacene thin films. By means of our charge-transient spectrometer we have achieved a resolution of hundreds of electrons but we believe it can be further improved approximately by one order of magnitude. In materials with relatively high defect concentration, using optimal shape of the probe, a resolution on the order of tens of manometers can be achieved. At low defect concentrations, e.g. in device quality silicon, a resolution on the hundred-nm level is expected.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lang, D.V., J. Appl. Phys. 45, 3023 (1974).Google Scholar
2. Kirov, K.I., Radev, K.B., Phys. Stat. Sol. (a) 63, 711 (1981).Google Scholar
3. Ferenczi, G., Boda, J. and Pavelka, T., Phys. Stat. Solidi (a) 94, K119 (1986).Google Scholar
4. Exarchos, M., Dieudonne, F., Jomaah, J., Papaioannou, G.J. and Balestra, F., Microelectron. Reliab. 44, 1643 (2004).Google Scholar
5. Kolev, P.V. and Deen, M.J., J. Appl. Phys. 83, 820 (1998).Google Scholar
6. Williams, C. C., Ann. Rev. Mater. Sci., 29, 471 (1999).Google Scholar
7. Sze, S. M., Physics of Semiconductor Devices, Wiley-Interscience, New York 1969.Google Scholar
8. Tóth, A.L., Dózsa, L., Gyulai, J., Giannazzo, F. and Rainieri, V., Mat. Sci. Semicond. Process. 4, 89 (2001).Google Scholar
9. Kim, C. K., Yoon, I. T., Kuk, Y. and Lim, H., Appl. Phys. Lett., 78, 613 (2001).Google Scholar
10. Lányi, Š., Acta Phys. Slovaca, 52, 55 (2002).Google Scholar
11. Lee, D. T., Pelz, J. P. and Bhushan, B., Rev. Sci. Instrum., 73, 3525 (2002).Google Scholar
12. Nádaždy, V., Rana, V., Ishihara, R., Lányi, Š., Durný, R., Metselaar, J.W. and Beenakker, C.I.M., Mat. Res. Soc. Symp. Proc., 910, 0910–A19, Materials Research Society 2006,Google Scholar
13. Lányi, Š. and Nádaždy, V., Ultramicroscopy, 107, 963 (2007).Google Scholar
14. Lányi, Š., Nádaždy, V., Hruškovic, M. and Hribik, J., presented at 2007 E-MRS Fall Meating, Warsaw, 2007.Google Scholar
15. Lányi, Š., Török, J. and Řehůřek, P., Rev. Sci. Instrum. 65, 2258 (1994).Google Scholar
16. Lányi, Š., Ultramicroscopy 103, 221 (2005).Google Scholar
17. Thurzo, I.. Gmucová, K., Rev. Sci. Instrum. 65, 2244 (1994).Google Scholar
18. Lányi, Š., Meas. Sci. Technol. 12, 1456 (2001).Google Scholar
19. Horowitz, P. and Hill, W., The Art of Electronics, Cambridge University Press 1985.Google Scholar
20. Yang, Yong Suk et al. , Appl. Phys. Lett. 80, 1595 (2002).Google Scholar