Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-12-01T09:04:37.820Z Has data issue: false hasContentIssue false

Nanoscale 3D Chemical Mapping by Spectroscopic Electron Tomography

Published online by Cambridge University Press:  11 February 2011

Günter Möbus
Affiliation:
Dept of Engineering Materials, University of Sheffield, Sheffield S1 3JD, UK Dept of Materials, University of Oxford, Oxford OX1 3PH, UK
Ron C. Doole
Affiliation:
Dept of Materials, University of Oxford, Oxford OX1 3PH, UK
Beverley J. Inkson
Affiliation:
Dept of Engineering Materials, University of Sheffield, Sheffield S1 3JD, UK Dept of Materials, University of Oxford, Oxford OX1 3PH, UK
Get access

Abstract

Electron Tomography is shown to be applicable to problems of materials science if a contrast mechanism is used which provides a projection relationship for crystals not depending on lattice plane orientation. Energy filtered TEM (EFTEM) in its mode of electron spectroscopic imaging (ESI) and STEM-EDX-Mapping are, subject to limitations, suitable image formation techniques. The spectroscopic operation not only allows to overcome Bragg scattering artefacts, but offers the possibility of recording 4-dimensional data (volume and energy) of a region of interest, otherwise only known from NMR and XAS/XANES tomography at larger length-scales and from field-ion microscopy (atom probe) under restrictive conditions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baumeister, W., Grimm, R., and Walz, J., Trends in cell biology, 9, 8185 (1999).Google Scholar
Frank, J., Electron Tomography, Plenum, New York (1992).Google Scholar
3. Hawkes, P.W., in [2]Google Scholar
4. Egerton, R.F., Electron Energy Loss Spectroscopy, 2nd ed., Plenum N.Y. (1996).Google Scholar
5. Williams, D.B, Carter, C.B., Transm. Electron Microscopy, IV, Plenum N.Y. (1996).Google Scholar
6. Möbus, G., Inkson, B.J., Microsc. Microanal. 7, S2, 84 (2001).Google Scholar
7. Möbus, G, Inkson, B.J., Proceed. EMAG, Inst. Phys. Conf. Ser 168, 267 (2001).Google Scholar
8. Möbus, G., Inkson, B.J., Appl. Phys. Lett. 79, 1369, (2001).Google Scholar
9. Möbus, G, Doole, R.C., Inkson, B.J., Ultramicroscopy, Proceed. SALSA (2003).Google Scholar
10. Weyland, M., Midgley, P.A., Thomas, J.M., J. phys chem B 105: 78827886 (2001).Google Scholar
11. Koguchi, M. et al., J. Electr. Microsc. 50, 235241 (2001)Google Scholar
12. Inkson, B.J., Threadgill, P.L., MRS Fall Meeting, Sympos. Proceed., 460, 767 (1997).Google Scholar
13. Inkson, B.J., Threadgill, P.L., Mat. Sci. & Eng., A258, 313 (1998).Google Scholar
14. Wang, Y., Jacobsen, C., Maser, J., and Osanna, A., J. microsc. 197, 8093 (2000).Google Scholar
15. Dunn, D.N., and Hull, R., Appl. Phys. Lett. 75, 3414 (1999).Google Scholar
16. Inkson, B.J., Steer, T., Möbus, G., and Wagner, T., J. microsc, 201, 256269 (2001).Google Scholar
17. Miller, M.K. et al, Atom Probe Field Ion Microscopy, Oxford Univ. Press, UK(1996).Google Scholar
18. Koster, A., Agard, D.A., eds., J. struct. Biology, 120, 207396 (1997).Google Scholar
19. Koster, A.J., Ziese, U., Verkleij, A.J., et al., J phys chem, B 104, 93689370 (2000).Google Scholar