Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T18:03:15.905Z Has data issue: false hasContentIssue false

Nanoparticles Amplified QCM Sensor for Enzyme Activity Evaluation

Published online by Cambridge University Press:  13 February 2015

M. Stoytcheva
Affiliation:
Engineering Institute of the Autonomous University of Baja California, Mexicali, Mexico
R. Zlatev
Affiliation:
Engineering Institute of the Autonomous University of Baja California, Mexicali, Mexico
G. Montero
Affiliation:
Engineering Institute of the Autonomous University of Baja California, Mexicali, Mexico
B. Valdez
Affiliation:
Engineering Institute of the Autonomous University of Baja California, Mexicali, Mexico
M. Schorr*
Affiliation:
Engineering Institute of the Autonomous University of Baja California, Mexicali, Mexico
*
*Presenting author’s email: [email protected]
Get access

Abstract

This investigation introduces a new very simple and efficient approach for QCM sensor response amplification, developed for hydrolases activity determination. For this purpose, the QCM crystal surface was modified with nanoparticles loaded enzyme substrate. During the enzymatic substrate degradation, the heavier nanoparticles were also released from the sensitive layer together with the substrate degradation products. Nanoparticles removal resulted in QCM signal amplification due to the higher nanoparticles specific mass compared with the specific mass of the substrate.

The suggested concept was successfully applied for creating of simple biosensing platforms for trypsin and lipase activity determination in real time using respectively SiO2 nanoparticles loaded olive oil and Ag nanoparticles loaded gelatin as enzyme substrates. Up to 10 times amplification of the QCM signal was reached applying the proposed approach compared with the common one.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

JECFA (Joint FAO/WHO Expert Committee on Food Additives), NMRS 50/TRS 488-JECFA 15/11; FAS 2/NMRS 50B-JECFA 15/11; COMPENDIUM/1561.Google Scholar
Banumathi, E., Haribalaganesh, R., Babu, S., Kumar, N., Sangiliyandi, G., Microvasc. Res. 77, 377381 (2009)CrossRefGoogle Scholar
Soleimani, M., Nadri, S.., Nat. Protoc. 4, 102106 (2009).CrossRefGoogle Scholar
Yang, M., Chen, C., Wang, X., Zhu, Y., Gu, Y., J. Biomed. Mater. Res. 91, 354361 (2009).CrossRefGoogle Scholar
Schuchert-Shi, A., Hauser, P.C., Anal. Biochem. 387, 202207 (2009).CrossRefGoogle Scholar
Chen, Y., Ding, J., Qin, W., 2012. Bioelectrochemistry, http://dx.doi.org/10.1016/j.bioelechem.2012.04.002 CrossRefGoogle Scholar
Forsmark, C., 2010. Chronic pancreatitis. In: Feldman, M., Friedman, L.S., Brandt, L.J., eds. Sleisinger and Fordtran's Gastrointestinal and Liver Disease. 9th ed. Philadelphia, Pa: Saunders Elsevier, chap. 59.Google Scholar
Temler, R., Felber, J-P., Biochim. Biophys. Acta 445, 720728 (1976).CrossRefGoogle Scholar
Schwert, G., Takenaka, Y.., Biochim. Biophys. Acta 16, 570575 (1955).CrossRefGoogle Scholar
Kersey, A., Berkoff, T., Morey, W., 1993. Opt. Lett. 18, 13701372.CrossRefGoogle Scholar
Spooncer, R., Al-Ramadhan, F., Jones, B., Int. J. Optoelectron. 7, 449452 (1992).Google Scholar
Chuang, Y-C., Li, J-C., Chen, S-H., Liu, T-Y., Kuo, C-H., Huang, W-T., Lin, C-S., Biomaterials 31, 60876095 (2010).CrossRefGoogle Scholar
Zaccheo, B., Crooks, R., Anal. Chem. 83, 11851188 (2011).CrossRefGoogle Scholar
Biloivan, O., Dzyadevych, S., Boubriak, O., Soldatkin, A., El’skaya, A., Electroanalysis 16, 18831889 (2004).CrossRefGoogle Scholar
Ionescu, R., Cosnier, S., Marks, S., Anal. Chem. 78, 63276331 (2006).CrossRefGoogle Scholar
Ionescu, R., Fillit, C., Jaffrezic-Renault, N., Cosnier, S., Biosens. Bioelectron. 24, 489492 (2008).CrossRefGoogle Scholar
Fordyce, K., Shvarev, A., Anal. Chem. 80, 827833 (2008).CrossRefGoogle Scholar
Adjemian, J., Anne, A., Cauet, G., Demaille, C., Langmuir 26, 1034710356 (2010).CrossRefGoogle Scholar
Baş, D., Boyaci, I.H.., Electroanalysis 22, 265267 (2010).CrossRefGoogle Scholar
Stoytcheva, M., Zlatev, R., Cosnier, S., Arredondo, M., Electrochim. Acta http://dx.doi.org/10.1016/j.electacta.2012.04.140 (2012).CrossRefGoogle Scholar
Krause, S., McNeil, C.J., Fernández-Sánchez, C., Sabot, A., American Scientific Publishers, Stevenson Ranch, CA. (2006).Google Scholar
Stair, J.L., Watkinson, M., Krause, S., Biosens. Bioelectron. 24, 21132118 (2009).CrossRefGoogle Scholar
Ahola, S., Turon, X., Osterberg, M., Laine, J., Rojas, O.J., Langmuir 24, 1159211599 (2008).CrossRefGoogle Scholar
Hu, G., Heitmann, J.A., Rojas, O.J., Anal. Chem. 81, 18721880 (2009).CrossRefGoogle Scholar
Hu, Q-Z., Jang, Ch-H., ACS Appl. Mater. Interfaces 4, 17911795 (2012).CrossRefGoogle Scholar
Jeong, C., Maciel, A.M., Pawlak, J.J., Heitmann, J.A., Argyropoulos, D.S., Rojas, O.J., 2005. 13th International Symposium on Wood, Fibre and Pulping Chemistry (ISWFPC), Vol.2: 495502, Auckland, New Zealand, May 16-19, 2005.Google Scholar
Josefsson, P., Henriksson, G., Wågberg, L., Biomacromolecules 9 249254 (2008).CrossRefGoogle Scholar
Turon, X., Rojas, O.J., Deinhammer, R.S., Langmuir 24, 38803887 (2008).CrossRefGoogle Scholar
Brockerhoff, H and Jensen, R., Lipolytic Enzymes, Academic Press, NY, 1974.Google Scholar
Desnuelle, P., in The Enzymes, 3rd Ed., ed. P. Boyer, Academic Press, NY, 1972, vol. 7, p. 575.Google Scholar
Treichel, H., Oliveira, D., Mazutti, M., Di Luccio, M. and Oliveira, J., Food Bioprocess Technol., 3, 182 (2010).CrossRefGoogle Scholar
Koop, H., Clinical Gastroenterology, 13, 739 (1984).Google Scholar
Aravindan, R., Anbumathi, P. and Viruthagiri, T., Indian Journal of Biotechnology, 6, 141 (2007).Google Scholar
Hasan, F., Shah, A.A. and Hameed, A., Enzyme and Microbial Technology, 39, 235 (2006).CrossRefGoogle Scholar
Hasan, F., Shah, A.A., Javed, S. and Hameed, A., African Journal of Biotechnology, 9, 4836 (2010).Google Scholar
Houde, A., Kademi, A. and Leblanc, D., Applied Biochemistry and Biotechnology, 118, 155 2004).CrossRefGoogle Scholar
Sharma, R., Chisti, U. and Banerjee, U.C., Biotechnology Advances, 19, 627 (2001).CrossRefGoogle Scholar
Ribeiro, B.D., Castro, A.M., Coelho, M.A.Z. and Freire, D.M.G., Enzyme Research, doi:10.4061/2011/615803 (2011).CrossRefGoogle Scholar
Stoytcheva, M., Montero, G., Toscano, L., Gochev, V. and Valdez, B., in Biodiesel-Feedstocks and Processing Technologies, eds. Stoytcheva, M. and Montero, G., InTech, Croatia, 2011, pp. 398.Google Scholar
Jensen, R., Lipids, 18, 650 (1983).CrossRefGoogle Scholar
Beisson, F., Tiss, A., Rivière, C. and Verger, R., European Journal of Lipid Science and Technology, 2, 133 (2000).3.0.CO;2-X>CrossRefGoogle Scholar
Gupta, R., Rathi, P., Gupta, N. and Bradoo, S., Biotechnology and Applied Biochemistry, 37, 63 (2003).CrossRefGoogle Scholar
Starodub, N.F., Journal of Molecular Catalysis B: Enzymatic, 40, 155 (2006).CrossRefGoogle Scholar
Hasan, F., Shah, A.A. and Hameed, A., Biotechnology Advances, 27, 78 (2009).CrossRefGoogle Scholar
Stoytcheva, M., Montero, G., Zlatev, R., Leon, J.A. and Gochev, V., Current Analytical Chemistry, 8, 3, 400 (2012).CrossRefGoogle Scholar
Khaydarov, R.A., Khaydarov, R.R., Gapurova, O., Estrin, Y., Scheper, T., J. Nanopart. Res. 11, 11931200 (2009).CrossRefGoogle Scholar
Snabe, T., Petersen, S.B., Chem. Phys. Lipids 125, 6982 (2003).CrossRefGoogle Scholar
Dixon, M., Thid, D. and Oom, A., Clean Technology Conference and Expo, June 21-24,2010. Anaheim, USA.Google Scholar
Shafiqul Islam, A.K.M., Ismail, Z., Ahmad, M.N., Saad, B., Othman, A.R., Shakaff, A.Y.Md., Daud, A. and Ishak, Z., Sensors and Actuators B, 109, 238 (2005).CrossRefGoogle Scholar
Harbeck, M., Erbahar, D.D., Gürol, I., Musluoğlu, E., Ahsen, V. and Öztürk, Z.Z., Sensors and Actuators B, 150, 346 (2010).CrossRefGoogle Scholar
Neff, P. A., Serr, A., Wunderlich, B., Bausch, A., Chem. Phys. Chem. DOI: 10.1002/cphc.200700279 (2007).Google Scholar
Millington, R., Mayes, A., Blyth, J., Lowe, C., Anal. Chem. 67, 42294233 (1995).CrossRefGoogle Scholar
Wu, S., Cai, Q., Grimes, C.A., Sensor Lett. 4, 160164(5) (2006).CrossRefGoogle Scholar
Cai, Q., Wang, R., Wu, L., Nie, L., Yao, S.., Microchemical Journal 55, 367374 (1997).CrossRefGoogle Scholar
Hanumegowda, N.M., White, I.M., Oveys, H., Fan, X., Sensor Lett. 3, 15 (2005).CrossRefGoogle Scholar