Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-28T11:13:20.529Z Has data issue: false hasContentIssue false

Nano-laminating of SiO2 and TiO2: Atomic layer deposition as a tool to gain new insight into interfaces

Published online by Cambridge University Press:  01 June 2015

Nicolas Sobel
Affiliation:
Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, 64287 Darmstadt, Germany
Christian Hess*
Affiliation:
Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, 64287 Darmstadt, Germany
Get access

Abstract

Atomic layer deposition (ALD) was used to deposit a laminate structure of alternating SiO2 and TiO2 monolayers onto a Si wafer. The resulting samples were analyzed in detail by X-ray photoelectron spectroscopy (XPS) revealing a distinct O 1s signature due to the presence of Si-O-Ti species. These findings are in good agreement with those reported for thin ALD films of TiO2 grown on SiO2.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

George, S. M., Chem. Rev. 110, 111131 (2010).CrossRefGoogle Scholar
Lee, B., Hande, A., Park, T. J., Chung, K. J., Ahn, J., Rousseau, M., Hong, D., Li, H., Liu, X., Shenai, D. and Kim, J., Microelectr. Eng. 88, 33853388 (2011).CrossRefGoogle Scholar
Wu, Y., Potts, S. E., Hermkens, P. M., Knoops, H. C. M., Roozeboom, F. and Kessels, W. M. M., Chem. Mater. 25, 46194622 (2013).CrossRefGoogle Scholar
Chaaya, A. A., Viter, R., Baleviciute, I., Bechelany, M., Ramanavicius, A., Gertnere, Z., Erts, D., Smyntyna, V. and Miele, P., J. Phys. Chem. C 118, 38113819 (2014).CrossRefGoogle Scholar
Lotfian, S., Mayer, C., Chawla, N., Llorce, J., Misra, A., Baldwin, J. K. and Molina-Aldareguía, J. M., Thin Solid Films 571, 260267 (2014).CrossRefGoogle Scholar
Lassaletta, G., Fernández, A., Espinós, J. P. and González-Elipe, A. R., J. Phys. Chem. 99, 14841490 (1995).CrossRefGoogle Scholar
Methaapanon, R. and Bent, S. F., J. Phys. Chem. C, 114, No. 23, (2010).CrossRefGoogle Scholar
Hess, C. in Nanostructured Catalysts: Selective Oxidations, edited by Hess, C. and Schlögl, R., (RSC Nanoscience & Nanotechnology No. 19, Cambridge, 2011) pp. 327328.CrossRefGoogle Scholar
Sobel, N., Hess, C., Lukas, M., Spende, A., Stühn, B., Toimil-Molares, M. E. and Trautmann, C., Beilstein J. Nanotechnol. 6, 472479 (2015).CrossRefGoogle Scholar
Du, Y., Du, X. and George, S. M., Thin Solid Films 491, 4353 (2005).CrossRefGoogle Scholar
Nottbohm, C. T. and Hess, C., Catal. Commun. 22, 3942 (2012).CrossRefGoogle Scholar
Himpsel, F. J., McFeely, F. R., Taleb-Ibrahimi, A. and Yarmoff, J. A., Phys. Rev. B 38, 60846096 (1988).CrossRefGoogle Scholar
Mayer, J. T., Diebold, U., Madey, T. E. and Garfunkel, E., J. Electron. Spectrosc. Rel. Phenom. 73, 111 (1995).CrossRefGoogle Scholar