Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-28T15:29:45.789Z Has data issue: false hasContentIssue false

Nanofeaturing materials for specific cell responses

Published online by Cambridge University Press:  01 February 2011

Get access

Abstract

A review of the ways in which cells react to nanofeatured surfaces is given. One of the prime reactions is of adhesion or otherwise to such surfaces. Topography appears to be of considerable importance and a wide range of cell properties are affected by the type, scale and regularity of topography. Chemistry can be combined with topography to fine- tune effects. Mechanical forces are also of importance but in practice it is hard to control these.

Examples will be given of methods of controlling adhesion, morphology, orientation, movement, phagocytic activity and activation and gene expression of cells, Effects vary according cell type and also the spacing and size of nanofeatures. A discussion of the application of these findings to the medical devices concludes this short review.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wong, J.Y., Leach, J.B and Brown, X.Q, Surface Science, 570, 110133 (2004).Google Scholar
2. Wilkinson, C. D. W. and Curtis, A. S. G., Dev. in Nanotechnology 3, 19 (1996).Google Scholar
3. Yokoo, A., Nakao, M., Yoshikawa, H., Masuda, H. and Tamamura, T., Japanese J. Applied Physics Part 1- 38(12B), 72687271 (1999).Google Scholar
4. Affrossman, S., Jerome, R., O'Neill, S.A., Schmitt, T., T., , Stamm, M., Colloid Polym. Sci., 278, 993999 (2000).Google Scholar
5. Dalby, M.J., Riehle, M. O., Johnstone, H., Affrossman, S. and Curtis, A.S.G., Biomaterials, 23, 29452954 (2002).Google Scholar
6. Curtis, A.SG., Casey, B., Gallagher, J.D., Pasqui, D., Wood, M.A.W. and Wilkinson, C.D.W., Biophysical Chemistry, 94, 275283 (2001).Google Scholar
7. Curtis, A.S.G., Gadegaard, N., Riehle, M.O., Wilkinson, C.D.W. and Aitchison, G., (2004). IEEE Transaction on Nanobioscience, 3, 6165 (2004).Google Scholar
8. Curtis, A.S.G., Gadegaard, N., Riehle, M.O., Wilkinson, C.D., and Aitchison, G., IEEE Transaction on Nanobioscience, 3, 6165 (2004).Google Scholar
9. Curtis, A.S.G. and Clark, P.. Critical Reviews in Biocompatibility, 5, 343362 (1990).Google Scholar
10. Andersson, A.S., Olsson, P., Lidberg, U. and Sutherland, D., Experimental Cell Research, 288, 177188 (2003).Google Scholar
11. Dalby, M.J., Giannaras, D., Riehle, M.O. and Gadegaard, N., et al Biomaterials, 25, 7783 (2004).Google Scholar
12. Dalby, M.J., Marshall, G.E., Johnstone, H.J.H. and Affrossman, S., IEEE Transactions in Nanobioscience, 1, 1823 (2003).Google Scholar
13. Hanarp, P., Sutherland, D., D., , Gold, J. and Kasemo, B., B. Nanostructured Materials, 12, (1-4 Pt A), 429432 (1999).Google Scholar
14. Dalby, M.J., Riehle, M. O., Johnstone, H.J.H., Affrossman, S. and Curtis, A.S.G., Tissue Engineering, 8, 10991107 (2002).Google Scholar
15. Wojciak-Stothard, B, Curtis, A., Monaghan, W., Macdonald, K. and Wilkinson, C., Exp. Cell Res, 223, 426435 (1996).Google Scholar
16. Dalby, M.J., Yarwood, S.J., Riehle, M.O., Johnstone, H.J., Affrossman, S. and Curtis, A.S.. Exp Cell Res. 276, 19 (2002).Google Scholar
17. Dalby, M.J., Yarwood, S.J., Johnstone, H.H., Affrossman, S., and Riehle, M., Fibroblast signaling events in response to Nanotopography: a gene array study. IEEE Trans Nanobioscience, 1, 1217 (2002).Google Scholar
18. Dalby, M.J., Riehle, M.O., Johnstone, H., Affrossman, S. and Curtis, A.S.. Cell Biol Int. 28, 229–36 (2004).Google Scholar
19. Dalby, M.J., Riehle, M.O., Yarwood, S.J., Wilkinson, C.D. and Curtis, A.S.Exp Cell Res. 284, 274–82 (2003).Google Scholar
20. Curtis, A.S.G., Biomechanics and cells (Soc. for Exp. Biol. Seminar Series 54), 54, 121130 (1994).Google Scholar
21. Zhu, B.S., Lu, Q.Q., Xu, Q.H., Yin, Y. H., Hu, J. and Wang, Z., Biomaterials, 25, 42154223 (2004).Google Scholar
22. Wojciak, B., Crossan, J., Curtis, A. S. G. and Wilkinson, C. D. W., J. Materials Science: Materials in Medicine 6, 266271 (1995).Google Scholar
23. Dow, J., Clark, P., Connolly, P., Curtis, A. and Wilkinson, C., .J. Cell Sci., 8, 5579 (1997).Google Scholar
24. Boocock, C.A., .Development, 107. 881890 (1989).Google Scholar
25. Andersson, A-S., Blackhed, F., F., , von Euler, A., Richter-Dahlfors, A., Sutherland, D. and Kasemo, B., Biomaterials, 24, 34273436 (2000).Google Scholar
26. Massia, S. P. and Hubbell, J. A., J.Cell Biology 114 (5), 10891100 (1991).Google Scholar
27. Curtis, A.S.G. and Clark, P., Critical Reviews in Biocompatibility, 5, 343362 (1990).Google Scholar
28. Berry, C.C., Cacou, C., Lee, D.A., Bader, D.L. and Shelton, J.C., Biorheology, 40, 337345 (2003).Google Scholar
29. Cheresh, D.A., Leng, J., and Klemke, R.L., J. Cell Biology, 146, 11071116 (1999)Google Scholar
30. Tschumperlin, D.J., Cell Cycle, 3, 996997 (2004)Google Scholar