Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-28T07:20:37.275Z Has data issue: false hasContentIssue false

Nano-domains in thermoelectric Half-Heusler CoTi0.5Sc0.5Sb alloys

Published online by Cambridge University Press:  19 March 2015

Joaquin Miranda Mena
Affiliation:
Lehrstuhl für Material- und Prozesssimulation, Universität Bayreuth, Universitätsstraße 30, D-95447 Bayreuth, Germany
Heiko G. Schoberth
Affiliation:
Lehrstuhl für Material- und Prozesssimulation, Universität Bayreuth, Universitätsstraße 30, D-95447 Bayreuth, Germany
Thomas Gruhn
Affiliation:
Lehrstuhl für Material- und Prozesssimulation, Universität Bayreuth, Universitätsstraße 30, D-95447 Bayreuth, Germany
Heike Emmerich
Affiliation:
Lehrstuhl für Material- und Prozesssimulation, Universität Bayreuth, Universitätsstraße 30, D-95447 Bayreuth, Germany
Get access

Abstract

Nano-phase separation is of great relevance for functional materials like thermoelectrics. Indeed, nano-domains in CoSb-based half-Heusler thermoelectrics have been found to reduce the lattice heat conductivity, which increases the figure of merit. Within this context, we studied the configurational energy in the alloy CoTi0.5Sc0.5Sb by means of first-principle calculations. We consider structures formed by Ti (Sc) nano-domains. In recent publications we have showed that these domains are the most stable atomic configurations. In this work we found that for a given concentration the electronic density of states is considerably modified as the volume of the domains are increased.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Wang, L. L., Miao, L., Wang, Z.Y., Wie, W., Xiong, R., Liu, H.J., Shi, J., and Tang, X.F., J. Appl. Phys. 105, 013709 (2009).CrossRefGoogle Scholar
Jeffrey Snyder, G. and Toberer, E. S., Nature Mat. 7, 105 (2008).CrossRefGoogle Scholar
Xie, W., Weidenkaff, A., Tang, X., Zhang, Q., Poon, J. and Tritt, T. M., Nanomaterials 2, 379 (2012).CrossRefGoogle Scholar
Yan, X., Liu, W., Chen, S., Wang, H., Zhang, Q., Chen, G. and Ren, Z., Advanced Energy Materials. 3, 1195 (2013).CrossRefGoogle Scholar
Joshi, G. Dahai, T., Chen, S., Wang, H., Shiomi, J., Chen, G., and Ren, Z., Nano Energy 2, 82 (2013).CrossRefGoogle Scholar
Graf, T., Klaer, P., Barth, J., Balke, B., Elmer, H -J, and Felser, C., Scr. Mater, 63, 1216 (2010).CrossRefGoogle Scholar
Schwall, M., Heusler Compunds for thermoelectric applications, Doctoral thesis, Johannes Gutenberg-Universitat, Mainz, Germany (2014).Google Scholar
Ouardi, S., Fecher, Gerhard H., Felser, C., Schwall, M., Naghavi, S. S., Gloskovskii, A., Balke, B., Hamrle, J., Postava, K., Pistora, J., Ueda, S. and Kobayashi, K., Phys. Rev. B 86, 045116 Google Scholar
Nanda, B. R. K. and Dasgupta, I., J. Phys.: Condens. Matter 17, 5037 (2005).Google Scholar
Chaput, L., Tobola, J., Pecheur, P., and Scherrer, H., Phys. Rev. B 73, 045121 (2006).CrossRefGoogle Scholar
Alling, B., Ekholm, M. and Abrikosov, I. A., Phys. Rev. B 77, 144414 (2008).CrossRefGoogle Scholar
Balke, B., Fecher, G. H., Gloskovskii, A., Barth, J., Kroth, K., Felser, C., Robert, R. and Weidenka, A., Phys. Rev. B 77, 045209 (2008).CrossRefGoogle Scholar
Zhu, Zhiyong, Cheng, Yingchun, and Schwingenschlogl, Udo, Phys. Rev. B 84, 113201 (2011).CrossRefGoogle Scholar
Miranda Mena, J., Schoberth, H. G., Gruhn, T., and Emmerich, H., submitted to Phys. Rev. B (2014)Google Scholar
Blochl, P.E., Phys. Rev. B 50, 17953 (1994).CrossRefGoogle Scholar
Kresse, G. and Joubert, D., Phys. Rev. B 59, 1758 (1999).CrossRefGoogle Scholar
Monkhorst, H. J. and Pack, J. D., Phys. Rev. B 13, 5188 (1976).CrossRefGoogle Scholar
Barth, J., Balke, B., Fecher, G. H., Stryhanyuk, H., Gloskovskii, A., Naghavi, S. and Felser, C., J. Phys. D: App. Phys. 42, 185401 (2009).CrossRefGoogle Scholar
Kandpal, H. C., Feser, C. and Seshadri, R., Journal of Physics D: App. Physics. 39 776 (2006)CrossRefGoogle Scholar
Sootsman, J. R., Chung, D. Y. and Kanatzidis, M. G., Angew. Chem., 121, 8768 (2009)CrossRefGoogle Scholar