Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T16:04:50.525Z Has data issue: false hasContentIssue false

Nacre: A Unique Biomaterial Patterned by Liquid Crystals

Published online by Cambridge University Press:  01 February 2011

Antonio Gerardo Checa
Affiliation:
[email protected], Universidad de Granada, Estratigrafía y Paleontología, Avenida Fuentenueva s/n, Granada, E-18071, Spain, +34958243201, +34958248528
Julyan H.E. Cartwright
Affiliation:
[email protected], Consejo Superior de Investigaciones Científicas, Instituto Andaluz de Ciencias de la Tierra, Edificio Instituto López Neyra, Avenida del Conocimiento s/n, Armilla (Granada), 18100, Spain
Bruno Escribano
Affiliation:
[email protected], Consejo Superior de Investigaciones Científicas, Instituto Andaluz de Ciencias de la Tierra, Edificio Instituto López Neyra, Avenida del Conocimiento s/n, Armilla (Granada), 18100, Spain
Ignacio Sáinz-Díaz
Affiliation:
[email protected], Consejo Superior de Investigaciones Científicas, Instituto Andaluz de Ciencias de la Tierra, Edificio Instituto López Neyra, Avenida del Conocimiento s/n, Armilla (Granada), 18100, Spain
Get access

Abstract

The sequence of formation of the organic and inorganic components of nacre in bivalves and gastropods is re-studied. We reach the conclusion that interlamellar membranes are formed well in advance of the other elements. In this way, we support and refine the compartment theory for the formation of nacre. We explain the arrangement of chitin crystallites within a single interlamellar membrane and the layering of interlamellar membranes as a process of formation of a liquid crystal.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Addadi, L. and Weiner, S., Nature 389, 912915 (1997).Google Scholar
2. Jackson, A. P., Vincent, J. F. V. and Turner, R. M., Proc. R. Soc. B 234, 415440 (1988).Google Scholar
3. Bevelander, G. and Nakahara, H., Calcif. Tissue Res. 3, 8492 (1969).Google Scholar
4. Nakahara, H., Venus 38, 205211 (1979).Google Scholar
5. Lin, A. and Meyers, M. A., Mat. Sci. Engineer. A 390, 2741 (2005).Google Scholar
6. Levi-Kalisman, Y., Falini, G., Addadi, L. and Weiner, S., J. Struct. Biol. 135, 817 (2001).Google Scholar
7. Nakahara, H., in Mechanisms and Phylogeny of Mineralization in Biological Systems, edited by Suga, S. and Nakahara, H. (Springer, Berlin, 1991) pp. 343350.Google Scholar
8. Cartwright, J. H. E. and Checa, A. G., J. R. Soc. Interface 4, 491504 (2007).Google Scholar
9. Nakahara, H., in Biomineralization and Biological Metal Accumulation, edited by Westbroek, P. and Jong, E. W. de (Reidel, Dordrecht, 1983) pp. 225230.Google Scholar
10. Belamie, E., Davidson, P. and Giraud-Guille, M. M., J. Phys. Chem. B 108, 1499115000 (2004).Google Scholar
11. Lin, A. and Meyers, M. A., Mater. Sci. Eng. 390, 2741 (2005).Google Scholar
12. Bouligand, Y., Tissue Cell 4, 189217 (1972).Google Scholar
13. Neville, A. C., Biology of Fibrous Composites (Cambridge University Press, Cambridge, UK, 1993), p. 214.Google Scholar
14. Kléman, M., Rep. Prog. Phys. 52, 555654 (1989).Google Scholar
15. Chernov, A. A., J. Struct. Biol. 142, 321 (2003).Google Scholar
16. Epstein, A., Akey, A. and Yao, N., Microsc. Microanal. 12, 912913 (2006).Google Scholar