Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-26T04:54:05.175Z Has data issue: false hasContentIssue false

Multi-Scale Simulation of Transport via a Mo/n+-GaAs Schottky Contact

Published online by Cambridge University Press:  18 September 2013

Manuel Aldegunde
Affiliation:
Electronic Systems Design Centre, College of Engineering, Swansea University, Swansea SA2 8PP, Wales, U.K.
Steven P. Hepplestone
Affiliation:
Department of Physics and Astronomy and London Centre for Nanotechnology, University College London, Gower Street, London WC1E 6BT, U.K.
Peter V. Sushko
Affiliation:
Department of Physics and Astronomy and London Centre for Nanotechnology, University College London, Gower Street, London WC1E 6BT, U.K.
Karol Kalna
Affiliation:
Electronic Systems Design Centre, College of Engineering, Swansea University, Swansea SA2 8PP, Wales, U.K.
Get access

Abstract

A multi-scale modeling of electron transport via a metal-semiconductor interface is carried out by coupling ab initio calculations with three-dimensional finite element ensemble Monte Carlo simulations. The results for the Mo/GaAs (001) interface show that variations of the electronic properties with the distance from the interface have a strong impact on the transport characteristics. In particular, the calculated tunneling barrier differs dramatically from that of the ideal Schottky model of an abrupt metal-semiconductor interface. The band gap narrowing near the interface lowers resistivity by more than one order of magnitude: from 2.1×10-8 Ωcm² to 4.7×10-10 Ωcm². The dependence of the electron effective mass from the distance to the interface also plays an important role bringing resistivity to 7.9×10-10 Ωcm².

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Truman, J. K. and Holloway, P. H., J. Vac. Sci. & Technol. A 3, 992 (1985).CrossRefGoogle Scholar
Singisetti, U., Wistey, M. A., Zimmerman, J. D., Thibeault, B. J., Rodwell, M. J., Gossard, A. C., and Bank, S. R., Appl. Phy. Lett. 93, 183502 (2008).CrossRefGoogle Scholar
Jacoboni, C. and Lugli, P., The Monte Carlo Method for Semiconductor Device Simulation. Wien-New York: Springer-Verlag, 1989.CrossRefGoogle Scholar
Aldegunde, M., Seoane, N., García-Loureiro, A. J. and Kalna, K., Comput. Phys. Commun. 181, 24 (2010).CrossRefGoogle Scholar
Perdew, J. P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
Blöchl, P. E., Phys. Rev. B 50, 17953 (1994).CrossRefGoogle Scholar
Kresse, G. and Furthmiller, J., Phys. Rev. B 54, 11169 (1996).CrossRefGoogle Scholar
Dovesi, R., Saunders, V. R., Roetti, C., Orlando, R., Zicovich-Wilson, C. M., Pascale, F., Civalleri, B., Doll, K., Harrison, N. M., Bush, I. J., D’Arco, P. and Llunell, M., CRYSTAL09, (2009) CRYSTAL09 User’s Manual. University of Torino, Torino.Google Scholar
Weigend, F., Ahlrichs, R., Phys. Chem. Chem. Phys. 7, 3927 (2005).CrossRefGoogle Scholar
Sun, L., Liu, X. Y., Liu, M., Du, G. and Han, R. Q., Semicond. Sci. Technol. 18, 576 (2003).CrossRefGoogle Scholar
Razavy, M., Quantum Theory of Tunneling, World Scientific (2003).CrossRefGoogle Scholar
Rhoderick, E. H. and Williams, R. H., Metal-Semiconductor Contacts, Oxford University Press (1988).Google Scholar
Sze, S. M. and Ng, K. K., Physics of Semiconductor Devices, Wiley-Interscience (2006).CrossRefGoogle Scholar