Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T03:03:51.177Z Has data issue: false hasContentIssue false

Multiscale Modeling of Growth and Structure of Silicon Nanoparticles in an Oxide Matrix

Published online by Cambridge University Press:  26 February 2011

Decai Yu
Affiliation:
[email protected], The University of Texas at Austin, Chemical Engineering, 1 University Station C0400, Austin, TX, 78712, United States
Sangheon Lee
Affiliation:
[email protected], The University of Texas at Austin, Chemical Engineering, 1 University Station C0400, Austin, TX, 78712, United States
Gyeong S Hwang
Affiliation:
[email protected], The University of Texas at Austin, Chemical Engineering, 1 University Station C0400, Austin, TX, 78712, United States
Get access

Abstract

A first principles-based multiscale model is developed to examine mechanisms underlying Si nanocrystal formation in Si-rich SiO2. Using the multiscale approach, we have found that the embedded nanocrystal formation is mainly driven by suboxide penalty arising from incomplete O coordination, with a minor contribution of strain, and it is primarily controlled by O diffusion rather than excess Si diffusion and agglomeration. The overall behavior of Si cluster growth from our Monte Carlo simulations based on these fundamental findings agrees well with experiments.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Fernandez, B.G., Lopez, M., Garcia, C., Perez-Rodriguez, A., Morante, J.R., Bonafos, C., Carrada, M. and Claverie, A., J. Appl. Phys. 91, 798 (2002).Google Scholar
2. Muller, T., Heinig, K.H. and Moller, W., Appl. Phys. Lett. 81, 3049 (2002).Google Scholar
3. Wooten, F., Winer, K. and Weaire, D., Phys. Rev. Lett. 54 1392 (1985)10.1103/PhysRevLett.54.1392Google Scholar
4. Yu, D., Hwang, G.S., Kirichenko, T.A. and Banerjee, S.K., Phys. Rev. B 72, 205204 (2005).Google Scholar
5. Laaziri, K., Kycia, S., Roorda, S., Chicoine, M., Robertson, J.L., Wang, J. and Moss, S.C., Phys. Rev. B 60, 13520 (1999).Google Scholar
6. Brunet-Bruneau, A., Souche, D., Fisson, S., Van, V.N., Vuye, G., Abeles, F. and Rivory, J., Journal of Vacuum Science & Technology A-Vacuum Surfaces and Films 16, 2281 (1998).10.1116/1.581341Google Scholar
7. Tu, Y. and Tersoff, J., Phys. Rev. Lett. 84, 4393 (2000).Google Scholar
8. Kresse, G. and Furthmuller, J., Vasp the guide (Vienna, Austria: Vienna University of Technology) (2001).Google Scholar
9. Perdew, J.P. and Wang, Y., Phys. Rev. B 45, 13244 (1992).10.1103/PhysRevB.45.13244Google Scholar
10. Vanderbilt, D., Phys. Rev. B 41, 7892 (1990).Google Scholar
11. Monkhorst, H.J. and Pack, J.D., Phys. Rev. B 13, 5188 (1976).Google Scholar
12. Hamann, D.R., Phys. Rev. B 61, 9899 (2000).Google Scholar
13. Bongiorno, A. and Pasquarello, A., Phys. Rev. B 62, 16326 (2000).Google Scholar
14. Tsoukalas, D., Tsamis, C. and Normand, P., J. Appl. Phys. 89, 7809 (2001).Google Scholar
15. Uematsu, M., Kageshima, H., Takahashi, Y., Fukatsu, S., Itoh, K. M., Shiraishi, K., and Gosele, U., Appl. Phys. Lett. 84, 876 (2004).Google Scholar
16. Kirichenko, T.A., Yu, D., Banerjee, S.K. and Hwang, G.S., Phys. Rev. B 72, 35345 (2005).10.1103/PhysRevB.72.035345Google Scholar